a) Tìm giá trị nhỏ nhất của các biểu thức sau :
A = \(x^2+10x-37\) với x ∈ R
B = \(\left(\frac{1}{2}x^2+1\right)^2-3\left(\frac{1}{2}x^2+1\right)\) với x ∈ R
C = \(2x^2+9y^2-6xy-6x-12y+20\) với x ∈ R
D = \(x^2-2xy+2y^2+2x-10y+17\) với x , y ∈ R
b) Tìm giá trị lớn nhất của biểu thức sau :
A = \(6x-x^2+3\) với mọi x ∈ R
B = \(\left(1-2x\right)\left(x+3\right)-9\) với x ∈ R
C = \(\frac{1}{x^2-4x+9}\) với x ∈ R
\(A=x^2+10x-37\)
\(=\left(x+5\right)^2-62\)
Có \(\left(x+5\right)^2\ge0\forall x\in R\)
\(\Rightarrow\left(x+5\right)^2-62\ge-62\forall x\in R\)
Dấu = xảy ra \(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)
Vậy A đạt GTNN là -62 tại x=-5