Cho phương trình \(x^2-ax+a-1=0\) có hai nghiệm \(x_1,x_2\)
\(a\)) Không giải phương trình, hãy tính giá trị của biểu thức: \(M=\dfrac{3x_1^2+3x_2^2-3}{x_1^2x_2+x_1x_2^2}\)
\(b\)) Tìm giá trị của \(a\) để: \(P=x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Some novels are going to be written by Mr Pike next year.
2. The test is going to be corrected by the teacher on time.
Nếu đúng cho mik 1 tick nhé
Tks bạn.
Some novels are going to be written by Mr Pike
The test is going to be corrected by the teacher on time

bên ngoài trời mưa " rào rào " trông thật êm đềm, những hạt mưa rơi " long lanh ". những tia sáng le lói xuyên qua những hạt mưa trong thật " lung linh ".
viết lăng nhăng cho có đấy

Lời giải:
Vì $MA,MB$ là tiếp tuyến của $O$ nên $MA\perp OA, MB\perp OB$
$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$
Xét tứ giác $MAOB$ có $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$. Mà 2 góc này đối nhau nên $MAOB$ là tứ giác nội tiếp.
$\Rightarrow M, A,O,B$ cùng thuộc 1 đường tròn (1)
Mặt khác:
Tam giác $ONP$ cân tại $O$ (do $ON=OP=R$) nên trung tuyến $OK$ đồng thời là đường cao.
$\Rightarrow \widehat{MKO}=90^0$
Xét tứ giác $MAKO$ có $\widehat{MAO}=\widehat{MKO}=90^0$. Mà 2 góc này cùng nhìn cạnh $MO$ nên $MAKO$ là tứ giác nội tiếp.
$\Rightarrow M,A,K,O$ cùng thuộc 1 đường tròn (2)
Từ $(1); (2)\Rightarrow M, A, O, K,B$ cùng thuộc 1 đường tròn.

Lời giải:
Vì $MA,MB$ là tiếp tuyến của $O$ nên $MA\perp OA, MB\perp OB$
$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$
Xét tứ giác $MAOB$ có $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$. Mà 2 góc này đối nhau nên $MAOB$ là tứ giác nội tiếp.
$\Rightarrow M, A,O,B$ cùng thuộc 1 đường tròn (1)
Mặt khác:
Tam giác $ONP$ cân tại $O$ (do $ON=OP=R$) nên trung tuyến $OK$ đồng thời là đường cao.
$\Rightarrow \widehat{MKO}=90^0$
Xét tứ giác $MAKO$ có $\widehat{MAO}=\widehat{MKO}=90^0$. Mà 2 góc này cùng nhìn cạnh $MO$ nên $MAKO$ là tứ giác nội tiếp.
$\Rightarrow M,A,K,O$ cùng thuộc 1 đường tròn (2)
Từ $(1); (2)\Rightarrow M, A, O, K,B$ cùng thuộc 1 đường tròn.
Ta nhận thấy tổng các hệ số của pt bậc 2 đã cho là \(1-a+a-1=0\) nên pt này có 1 nghiệm là 1, nghiệm kia là \(a-1\), nhưng do không được giải pt nên ta sẽ làm theo cách sau:
Ta thấy pt này luôn có 2 nghiệm phân biệt. Theo hệ thức Viète:
\(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=a-1\end{matrix}\right.\)
Vậy, \(M=\dfrac{3\left(x_1^2+x_2^2\right)-3}{x_1x_2\left(x_1+x_2\right)}\)
\(M=\dfrac{3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-3}{a\left(a-1\right)}\)
\(M=\dfrac{3\left(a^2-2\left(a-1\right)\right)-3}{a\left(a-1\right)}\)
\(M=\dfrac{3\left[\left(a-1\right)^2-1\right]}{a\left(a-1\right)}\)
\(M=\dfrac{3a\left(a+2\right)}{a\left(a-1\right)}\)
\(M=\dfrac{3a+6}{a-1}\)
b) Ta có \(P=\left(x_1+x_2\right)^2-2x_1x_2=a^2-2\left(a-1\right)=\left(a-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow a=1\). Vậy để P đạt GTNN thì \(a=1\)