K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ý bn là phân tích thành nhân tử đúng hông

 (x+1)2 - (6+x)(x-6)-37

=x2+2x+1-x2-36-37

=2x-74

=-37x

25 tháng 11 2019

\(\Leftrightarrow\)x^2 + 2x + 1 - 36 - x^2 -37

26 tháng 11 2019

Đa thức \(x^2-3x-2\)có nghiệm\(\Leftrightarrow x^2-3x-2=0\)

Ta có: \(\Delta=3^2+4.2=17,\sqrt{\Delta}=\sqrt{17}\)

Đa thức có 2 nghiệm:

\(x_1=\frac{3+\sqrt{17}}{2}\);\(x_2=\frac{3-\sqrt{17}}{2}\)

Vậy để biểu thức \(\frac{1}{x^2-3x-2}\)được gọi là phân thức\(\Leftrightarrow\)x khác \(\frac{3+\sqrt{17}}{2}\),\(\frac{3-\sqrt{17}}{2}\)

25 tháng 11 2019

BL

=a^2-1+2019a-2019-2020ab^2+2020b^2+b-ab

=(a-1)(a+1)+2019(a-1)-2020b^2(a-1)-b(a-1)

=(a-1)(a+2020-2021b)

:)

trả lời:

\(\frac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\frac{\left(x-y\right)^3+z^3+3x^2y-3xy^2+3xyz}{x^2+2xy+y^2+y^2+2yz+z^2+z^2-2xz+x^2}\)

\(=\frac{\left(x-y+z\right)\left[\left(x-y\right)^2-\left(x-y\right).z+z^2\right]+3xy\left(x-y+z\right)}{2x^2+2y^2+2z^2+2xy+2yz-2zx}\)

\(=\frac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2+3xy\right)}{2\left(x^2+y^2+z^2+xy+yz-zx\right)}\)

\(=\frac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy+yz-zx\right)}{2\left(x^2+y^2+z^2+xy+yz-zx\right)}\)

\(=\frac{x-y+x}{2}\)

~hok tốt~

25 tháng 11 2019

A B C M D E H K O I

a) Xét tứ giác ADME có \(\widehat{DAE}=\widehat{AEM}=\widehat{ADM}=90^0\)

=> ADME là hình chữ nhật

=> AM= DE

b) Gọi O là giao điểm của AM và DE => OA = OM = OD = OE (2)

Do ADME là HCN => DA = ME

=> 2DA = 2ME hay DA + AI = EM + MK (vì DA = AI; ME = MK)

=> DI = EK

Xét tứ giác DIEK có DI = EK (cmt)

     DI// EK (vì CEMD là HCN)

=> DKEI là hình bình hành

Do O là trung điểm của DE => KI đi qua O

=> DE cắt IK tại O và OD = OE;  OK = OI (1) 

Từ (1) và (2) => DE; AM; IK đồng quy tại trung điểm O của mỗi đường

c) don't know, tự làm

26 tháng 11 2019

Ta có: \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow2ab+2bc+2ac=2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Rightarrow\left(1\right)\)xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

\(\Rightarrow M=ab+bc+ca-\left(a+b+c\right)+1=3a^2-3a+1\)

\(=\left(\sqrt{3}a\right)^2-2.\sqrt{3}a.\frac{\sqrt{3}}{2}+\frac{3}{4}+\frac{1}{4}\)

\(=\left(\sqrt{3}a-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

(Dấu "=" \(\Leftrightarrow\sqrt{3}a-\frac{\sqrt{3}}{2}=0\Leftrightarrow a=\frac{1}{2}\)

hay \(a=b=c=\frac{1}{2}\)

Vậy \(M_{min}=\frac{1}{4}\Leftrightarrow a=b=c=\frac{1}{2}\)

25 tháng 11 2019

giả thiết \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\) (biến đổi tương đương)

Thay xuống: \(M=3a^2-3a+1=3\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Đẳng thức xảy ra khi \(a=\frac{1}{2}\)

P/s; hướng làm là đưa về 1 biến như vậy đó, khi tính toán có thể có sai số, bạn tự check lại.