K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7

\(A=2.5+5.8+8.11+...+293.296+296.299\\ 9A=2.5.9+5.8.9+8.11.9+...+293.296.9+296.299.9\\ 9A=2.5.9+5.8.\left(11-2\right)+8.11.\left(14-5\right)+...+293.296.\left(299-290\right)+296.299.\left(302-293\right)\)\(9A=2.5.9+5.8.11-2.5.8+8.11.14-5.8.11+...+293.296.299-290.293.296+296.299.302-293.296.299\)\(9A=2.5.9-2.5.8+296.299.302\\9A=10+296.299.302 \\ A=\dfrac{10+296.299.302}{9}=2969802\)

 

20 tháng 7

 Biểu thức đại số biều thị quãng đường đi của ô tô là : 30.x

20 tháng 7

Biểu thức biểu thị quãng đường là : \(s=30t\left(km\right)\)

20 tháng 7

Sửa đề: Chiều rộng là x (m)

Do chiều dài gấp đôi chiều rộng nên chiều dài là 2x (m)

Diện tích hình chữ nhật là:

2x.x = 2x² (m²)

20 tháng 7

a, Ta có (AC;AB) = ^BAC 

tan^BAC =  BC/AB = 1 => ^BAC = 450

b, Ta có BD // B'D' 

=> (AD';BD) = (AD';B'D') = ^AD'B'

Xét tam giác AD'B' ta có AB' = B'D' = AD' 

=> tam giác AD'B' đều => ^AD'B' = 600

c, Ta có BD vuông AC ; BD vuông CC' 

=> BD vuông (ACC') 

Mà AC' thuộc (ACC') => AC' vuông BD 

20 tháng 7

A B C H I E F

a/

Xét tg ABI và tg ACI có

AB=AC (cạnh bên tg cân)

\(\widehat{BAH}=\widehat{CAH}\) (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường phân giác của góc ở đỉnh)

AI chung

=> tg ABI = tg ACI (c.g.c) => IB=IC => tg IBC cân

b/

tg ABI = tg ACI (cmt) \(\Rightarrow\widehat{AIB}=\widehat{AIC}\)

c/ Xét tg IBF và tg ICE có

\(\widehat{BIF}=\widehat{CIE}\) (góc đối đỉnh)

IB=IC (cmt)

tg ABI = tg ACI (cmt) \(\Rightarrow\widehat{ABI}=\widehat{ACI}\)

=> tg IBF = tg ICE => IE=IF

d/

Ta có

IE=IF (cmt) => tg IEF cân tại I

\(\Rightarrow\widehat{IEF}=\widehat{IFE}=\dfrac{180^o-\widehat{FIE}}{2}\) (1)

Xét tg cân IBC có

\(\widehat{IBC}=\widehat{ICB}=\dfrac{180^o-\widehat{BIC}}{2}\) (2)

Mà \(\widehat{FIE}=\widehat{BIC}\) (góc đối đỉnh) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{IFE}=\widehat{ICB}\) Hai góc này nằm ở vị trí so le trong

=> EF//BC

20 tháng 7

loading... a) ∆ABC cân tại A (gt)

AH là đường cao (gt)

⇒ AH cũng là đường trung trực của ∆ABC

⇒ AH là đường trung trực của BC

I ∈ AH (gt)

⇒ IB = IC

⇒ ∆IBC cân tại I

b) Xét ∆AIB và ∆AIC có:

AI là cạnh chung

AB = AC (do ∆ABC cân tại A)

IB = IC (cmt)

⇒ ∆AIB = ∆AIC (c-c-c)

⇒ ∠AIB = ∠AIC (hai góc tương ứng)

c) Do ∆AIB = ∆AIC (cmt)

⇒ ∠ABI = ∠ACI (hai góc tương ứng)

⇒ ∠FBI = ∠ECI

Xét ∆BIF và ∆CIE có:

∠FBI = ∠ECI (cmt)

IB = IC (cmt)

∠FIB = ∠EIC (đối đỉnh)

⇒ ∆BIF = ∆CIE (g-c-g)

⇒ IF = IE (hai cạnh tương ứng)

Hay IE = IF

d) ∆IBC cân tại I (cmt)

IH là đường trung trực của BC (cmt)

⇒ IH cũng là đường phân giác của ∆IBC

⇒ ∠BIH = ∠CIH

Ta có:

∠AIE = ∠BIH (đối đỉnh)

∠AIF = ∠CIH (đối đỉnh)

Mà ∠BIH = ∠CIH (cmt)

⇒ ∠AIE = ∠AIF

Xét ∆AIE và ∆AIF có:

IE = IF (cmt)

∠AIE = ∠AIF (cmt)

AI là cạnh chung

⇒ ∆AIE = ∆AIF (c-g-c)

⇒ AE = AF (hai cạnh tương ứng)

⇒ A nằm trên đường trung trực của EF (1)

Do IE = IF (cmt)

⇒ I nằm trên đường trung trực của EF (2)

Từ (1) và (2) ⇒ AI là đường trung trực của EF

⇒ AI ⊥ EF

⇒ AH ⊥ EF

Mà AH ⊥ BC (gt)

⇒ EF // BC

20 tháng 7

Thời gian My đạp xe từ nhà đến trường:

4 : 12 = 1/3 (giờ) = 20 (phút)

My đến trường lúc:

6 giờ 50 phút + 20 phút = 7 giờ 10 phút

20 tháng 7

Vận tốc Kangaroo tính bằng đơn vị m/giây:

54 × 1000 : 3600 = 15 (m/giây)

20 tháng 7

(98 . 76 - 9898 . 76) + (2001 + 2002 + 2003 + ... + 2017)

= 76.(98 - 9898) + (2017 + 2001) . 17 : 2

= 76.(-9800) + 4018 . 17 : 2

= -744800 + 34153

= -710647

\(\left(x+2y\right)^3-x^2+4y^2\)

\(=\left(x+2y\right)^3-\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x+2y\right)\left[\left(x+2y\right)^2-\left(x-2y\right)\right]\)

\(=\left(x+2y\right)\left(x^2+4xy+4y^2-x+2y\right)\)