K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8

\(x^4+6x^3+7x^2-6x+1\\ =\left(x^4+3x^3-x^2\right)+\left(3x^3+9x^2-x\right)-\left(x^2+3x-1\right)\\ =x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)^2\)

\(\left(x^2-4\right)\left(x^2-10\right)-72\)

\(=\left(x^2-7+3\right)\left(x^2-7-3\right)-72\)

\(=\left(x^2-7\right)^2-9-72\)

\(=\left(x^2-7\right)^2-81\)

\(=\left(x^2-7+9\right)\left(x^2-7-9\right)\)

\(=\left(x^2+2\right)\left(x^2-16\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)

\(\left(x^2-4\right)\left(x^2-10\right)-72\)

\(=x^4-10x^2-4x^2+40-72\)

\(=x^4-14x^2-32\)

\(=\left(x^2-16\right)\left(x^2+2\right)=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)

1 tháng 8

\(x^{64}+x^{32}+1\\ =x^{64}+2x^{32}+1+x^{32}-2x^{32}\\ =\left[\left(x^{32}\right)^2+2\cdot x^{32}\cdot1+1^2\right]-x^{32}\\ =\left(x^{32}+1\right)^2-\left(x^{16}\right)^2\\ =\left(x^{32}-x^{16}+1\right)\left(x^{32}+x^{16}+1\right)\\ =\left(x^{32}-x^{16}+1\right)\left[\left(x^{32}+2x^{16}+1\right)+x^{16}-2x^{16}\right]\\ =\left(x^{32}-x^{16}+1\right)\left[\left(x^{16}+1\right)^2-x^{16}\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^{16}+x^8+1\right)\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left[\left(x^{16}+2x^8+1\right)-x^8\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left[\left(x^8+1\right)^2-x^8\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^8+x^4+1\right)\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left[\left(x^8+2x^4+1\right)-x^4\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left[\left(x^4+1\right)^2-x^4\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)

\(=\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left[\left(x^4+2x^2+1\right)-x^2\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left[\left(x^2+1\right)^2-x^2\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(x^{64}+x^{32}+1\)

\(=x^{64}+2x^{32}-x^{32}+1\)

\(=\left(x^{64}+2^{32}+1\right)-x^{32}\)

\(=\left(x^{32}+1\right)^2-\left(x^{16}\right)^2\)

\(=\left(x^{32}+1-x^{16}\right)\left(x^{32}+1+x^{16}\right)\)

1 tháng 8

a)

A = -4x² - 12x

= -4(x² + 3x)

loading...loading...

loading...

loading...

loading...

loading...  

1 tháng 8

b)

B = 3 - 4x - x²

= -(x² + 4x - 3)

= -(x² + 4x + 4 - 7)

= -(x + 2)² + 7

Do (x + 2)² ≥ 0

⇒ -(x + 2)² ≤ 0

⇒ -(x + 2)² + 7 ≤ 7

Vậy maxB = 7 khi x = -2

1 tháng 8

\(a.\left(x^2+5x+6\right)\left(x^2-15x+56\right)-144\\ =\left(x+2\right)\left(x+3\right)\left(x-7\right)\left(x-8\right)-144\\ =\left[\left(x+2\right)\left(x-7\right)\right]\left[\left(x+3\right)\left(x-8\right)\right]-144\\ =\left(x^2-5x-14\right)\left(x^2-5x-24\right)-144\\ =\left(x^2-5x-19+5\right)\left(x^2-5x-19-5\right)-144\\ =\left(x^2-5x-19\right)^2-5^2-144\\ =\left(x^2-5x-19\right)^2-169\\ =\left(x^2-5x+19\right)^2-13^2\\ =\left(x^2-5x-19-13\right)\left(x^2-5x-19+13\right)\\ =\left(x^2-5x-32\right)\left(x^2-5x-6\right)\\ =\left(x^2-5x-32\right)\left(x+1\right)\left(x-6\right)\) 

1 tháng 8

\(b.\left(x^2-11x+28\right)\left(x^2-7x+10\right)-72\\ =\left(x-4\right)\left(x-7\right)\left(x-5\right)\left(x-2\right)-72\\ =\left[\left(x-4\right)\left(x-5\right)\right]\left[\left(x-7\right)\left(x-2\right)\right]-72\\ =\left(x^2-9x+20\right)\left(x^2-9x+14\right)-72\\ =\left(x^2-9x+17+3\right)\left(x^2-9x+17-3\right)-72\\ =\left(x^2-9x+17\right)^2-3^2-72\\ =\left(x^2-9x+17\right)^2-81\\ =\left(x^2-9x+17\right)^2-9^2\\ =\left(x^2-9x+17-9\right)\left(x^2-9x+17+9\right)\\ =\left(x^2-9x+8\right)\left(x^2-9x+26\right)\\ =\left(x-1\right)\left(x-8\right)\left(x^2-9x+26\right)\)

a: \(P=4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{\left(3^{32}-1\right)\left(3^{32}+1\right)}{2}=\dfrac{3^{64}-1}{2}\)

b: \(Q=\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)

\(=\dfrac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)}{5^2-1}\)

\(=\dfrac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)}{5^2-1}\)

\(=\dfrac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)}{5^2-1}\)

\(=\dfrac{\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)}{5^2-1}\)

\(=\dfrac{\left(5^{32}-1\right)\left(5^{32}+1\right)}{24}=\dfrac{5^{64}-1}{24}\)

Bài 1;

a: ABCD là hình thang cân

=>\(\widehat{D}=\widehat{C}=60^0\)

ABCD là hình thang

=>\(\widehat{BAD}+\widehat{ADC}=180^0\)

=>\(\widehat{BAD}=120^0\)

ABCD là hình thang cân

=>\(\widehat{BAD}=\widehat{ABC}\)

=>\(\widehat{ABC}=120^0\)

b: Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

\(\widehat{ADE}=\widehat{BCF}\)

Do đó: ΔAED=ΔBFC

=>AE=BF

Bài 4:

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC

b: ΔAHB=ΔAKC

=>BH=CK

Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

KC=HB

Do đó: ΔKBC=ΔHCB

c: ΔAHB=ΔAKC

=>AH=AK

Xét ΔABC có \(\dfrac{AH}{AC}=\dfrac{AK}{AB}\)

nên KH//BC

Xét tứ giác BKHC có KH//BC và BH=KC

nên BKHC là hình thang cân

29 tháng 7

khai triển đa thức ta đc:

=x2-4x+4+x2+4x+4+x3+9x2+27x+27+27x3+27x2+9x+1

=28x3+36x2+36x+36

Vậy hệ số của x2 sau khi khai triển là 36

Xét tứ giác HMIK có \(\widehat{H}+\widehat{M}+\widehat{I}+\widehat{K}=360^0\)

=>\(3x+4x+2x+x=360\)

=>\(10x=360^0\)

=>\(x=36^0\)

=>\(\widehat{H}=3\cdot36^0=108^0;\widehat{M}=4\cdot36^0=144^0;\widehat{I}=2\cdot36^0=72^0;\widehat{K}=36^0\)

Vì \(\widehat{H}+\widehat{I}=180^0\)

nên HM//IK

=>HMIK là hình thang

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{5}=\dfrac{CD}{12}\)

mà BD+CD=BC=13cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{5}=\dfrac{CD}{12}=\dfrac{BD+CD}{5+12}=\dfrac{13}{17}\)

=>\(BD=\dfrac{13}{17}\cdot5=\dfrac{65}{17}\left(cm\right);CD=\dfrac{13}{17}\cdot12=\dfrac{156}{17}\left(cm\right)\)

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

\(\widehat{DCE}\) chung

Do đó: ΔCDE~ΔCAB

=>\(k=\dfrac{CD}{CA}=\dfrac{156}{17}:12=\dfrac{13}{17}\)

c: ΔCDE~ΔCAB

=>\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\)

=>\(\dfrac{CD}{CE}=\dfrac{CA}{CB}\)

Xét ΔCDA và ΔCEB có

\(\dfrac{CD}{CE}=\dfrac{CA}{CB}\)

\(\widehat{C}\) chung

Do đó: ΔCDA~ΔCEB

=>\(\dfrac{DA}{EB}=\dfrac{CA}{CB}\)

=>\(DA\cdot CB=BE\cdot AC\)

d: ΔCDE~ΔCAB

=>\(\dfrac{DE}{AB}=\dfrac{CD}{CA}\)

=>\(\dfrac{DE}{5}=\dfrac{156}{17}:12=\dfrac{13}{17}\)

=>\(DE=\dfrac{13}{17}\cdot5=\dfrac{65}{17}\left(cm\right)\)

Xét tứ giác ABDE có \(\widehat{EAB}+\widehat{EDB}=90^0+90^0=180^0\)

nên ABDE là tứ giác nội tiếp

=>\(\widehat{DEB}=\widehat{DAB}=45^0\)

Xét ΔDEB vuông tại D có \(\widehat{DEB}=45^0\)

nên ΔDEB vuông cân tại D

ΔBDE vuông cân tại D

=>\(S_{BDE}=\dfrac{1}{2}\cdot DB\cdot DE=\dfrac{1}{2}\cdot DB^2=\dfrac{1}{2}\cdot\left(\dfrac{65}{17}\right)^2=\dfrac{1}{2}\cdot\dfrac{4225}{289}=\dfrac{4225}{578}\left(cm^2\right)\)