K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

O A B C D E

a, vì \(AD\) là tia phân giác của góc \(\widehat{BAC}\) \(\Rightarrow\widehat{BAD}=\widehat{EAC}\)

mà \(\widehat{ABD}=\widehat{ABC}=\widehat{AEC}\) 

\(\Rightarrow\Delta ABD~\Delta AEC\) (g-g)

\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AC}\Leftrightarrow AB.AC=AE.AD\)

b, Ta có :

\(\widehat{EBD}=\widehat{EBC}=\widehat{EAC}=\widehat{BAE}\)

\(\Rightarrow\Delta EBD~\Delta EAB\)(g-g)

\(\Rightarrow\frac{EB}{EA}=\frac{ED}{EB}\Leftrightarrow ED.EA=EB^2\)

25 tháng 2 2021

a)xét ΔABE và ΔADC có :

BÅE = DÅC (gt)

AEB=ACB=ACD(cùng chắn cung AB)

=>ΔABE≈ΔADC(g.g)

\(\dfrac{AE}{AC}=\dfrac{AB}{AD}\)(hai cạnh t.ứ)

⇒AE.AD=AC.AB

b)Xét ΔBED và ΔAEB có :

góc E chung

góc EBD=gócEAC=gócEAB

ΔBED  ΔAEB(g.g)

\(\dfrac{ED}{EB}=\dfrac{EB}{EA}\)(hai cạnh t.ứ)

⇒ED.EA=EB2

O A B C D I E K

Ta có :

\(\frac{KC}{sin\widehat{CAK}}=\frac{R\sqrt{2}}{sin\widehat{AKC}}=\frac{R\sqrt{2}}{sin\widehat{AED}}=\frac{AE}{sin\widehat{ADE}}=\frac{AE}{sin\widehat{BIE}}=\frac{AE}{sin\widehat{AIE}}=\frac{3R}{\sqrt{2}}\)

\(\Rightarrow sin\widehat{AKC}=\frac{2}{3}\)

\(\Rightarrow AK=\frac{2}{3R}\)

áp dụng định lý Py ta go vào \(\Delta AOK\) ta được

\(AK^2=AO^2+OK^2\)

\(\Rightarrow OK=\sqrt{R^2-\frac{4}{9R^2}}=\sqrt{9R^4-4}\)

\(\Rightarrow DK=OD-OK=R-\sqrt{9R^4-4}\)

23 tháng 1 2021

\(AK=\frac{2}{\sqrt{3}}R\) chứ bạn?

13 tháng 2 2021

a) Có góc BAD =BOD ( vì cùng chắn cung BD)  (*)
Lại có BAD cũng là góc nt chắn cung BC và góc BOC là góc ở tâm chắn cung BC 
=> BAC =1/2 BOC 
Từ (*) => BOD=1/2 BOC 
=> BOD =COD ( vì cùng =1/2 BOC )
=>OD là tia p/g của góc BOC 
mà tam giác BOC cân tại O 
=> OD là tia p/g đồng thời cũng là đường cao của tam giác BOC 
=> OD vuông góc BD (đpcm)

25 tháng 2 2021

a)Xét đt O có :

ΔOBC cân tại O (OB=OC bk đt O)

Có góc BOD chắn cung BD

Mà góc BAD cùng chắn cung BD

⇒góc BOD=góc BAD=góc BAC

Má góc BAC chắn cung BC

⇒BAC=\(\dfrac{1}{2}\)cung BC

mà BOC = cung BC (cung chắn tâm)

⇒BOD=BAC=\(\dfrac{1}{2}\)BOD

b)Trong đt O',FAB=\(\dfrac{1}{2}\)FOB(góc nội tiếp=nửa góc ở tâm cùng chắn một cung)

Có EAB=EOB(cùng chắn cung EB)

⇒FAB=\(\dfrac{1}{2}\)EAB⇒AF là p|g EAB

cmtt⇒BF là p|g EBA

⇒F LÀ GIAO 3 ĐƯỜNG P|G EAB

 Điểm F cách đều ba cạnh của tam giác ABE

 

19 tháng 1 2021

\(S_{ABC}=\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}=\frac{abc}{4R}\)

+ Từ \(\frac{bc\sin A}{2}=\frac{ac\sin B}{2}\Rightarrow b\sin A=a\sin B\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\left(1\right)\)

+ Từ \(\frac{ac\sin B}{2}=\frac{ab\sin C}{2}\Rightarrow c\sin B=b\sin C\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(2\right)\)

+ Từ \(\frac{bc\sin A}{2}=\frac{abc}{4R}\Rightarrow\sin A=\frac{a}{2R}\Rightarrow\frac{a}{\sin A}=2R\left(3\right)\)

Từ (1) (2) (3) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\left(dpcm\right)\)

A B C H K

Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)

Ta có : sinA=BKAB ; sinB=AHAB ; sinC=AHAC

⇒ABsinC=ABAHAC=AB.ACAH ; ACsinB=ACAHAB=AB.ACAH

⇒csinC=bsinB (1)

Lại có : BK=sinC.BC⇒BCsinA=BCBKAB=BC.ABBK=AB.BCsinC.BC=ABsinC

⇒asinA=csinC (2)

Từ (1) và (2) ta có : asinA=bsinB=csinC (Đpcm)

A B C 0 H D

Vẽ đường kính AD và AH⊥BC(H∈BC).

Ta có \(\widehat{ACD}\)ACD^ là góc nội tiếp chắn nửa đường tròn ⇒ACD^=900.

Xét ΔABH và ΔADC có:


AHB^=ACD^=900;


ABH^=ADC^ \(\widehat{ABH}=\widehat{ADC}\)(hai góc nội tiếp cùng chắn cung AC);

⇒ΔABH∼ΔADC(g.g)⇒AHAC=ABAD⇒515=82R⇒2R=24⇔R=12(cm)

18 tháng 1 2021

Vẽ đường kính AK

+) Dễ có: ^KBC = ^KAC (2 góc nội tiếp cùng chắn cung KC) (1)

+) ^ABK là góc nội tiếp chắn nửa đường tròn nên ^ABK = 900

 Có: ^KBC + ^CBA = ^ABK = 900 (cmt)

       ^BAH + ^CBA = 900 (∆ABH vuông tại H)

Từ đó suy ra ^KBC = ^BAH                                                    (2)

Từ (1) và (2) suy ra ^BAH = ^KAC hay ^BAH = ^OAC (đpcm)

18 tháng 1 2021

Kẻ đường kính AE của đường tròn ( O) . Ta thấy \(\widehat{ACE}=90^o\)( góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow\widehat{OAC}+\widehat{AEC}=90^o\) (1)

Theo gt, ta có: \(\widehat{BAH}+\widehat{ABC}=90^O\) (2)

Lại có: \(\widehat{AEC}=\widehat{ABC}\) (3)

Từ (1), (2), (3) => đpcm