12 : 1,8 : 0,75
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2\) + 2\(xy\) + y2 - \(x-y\) - 12
= (\(x^2\) + 2\(xy\) + y2) - 16 + 4 - (\(x+y\))
= (\(x+y\))2 - 42 + 4 - (\(x+y\))
= (\(x+y\) - 4)(\(x+y\) + 4) - (\(x+y\) - 4)
= (\(x+y\) - 4)(\(x+y\) + 4 - 1)
= (\(x+y-4\))[\(x+y\) + (4-1)]
= (\(x+y\) - 4)(\(x+y\) + 3)
\(x^2+2xy+y^2-x-y-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
=(x+y-4)(x+y+3)
3: \(\left\{{}\begin{matrix}x+y+z=6\\2x-y+3z=9\\x+z=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y+z+2x-y+3z=6+9\\x+z=4\\x+y+z=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x+4z=15\\3x+3z=12\\x+y+z=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4z-3x-3z=15-12\\x+z=4\\y=6-x-z=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}z=3\\x=4-3=1\\y=2\end{matrix}\right.\)
5: \(\left\{{}\begin{matrix}2x+3y-z=11\\x-y+2z=-7\\x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y-z=11\\2x-2y+4z=-14\\2x-2y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+3y-z-2x+2y-4z=11+14\\2x+3y-z-2x+2y=11-6\\2x-2y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5y-5z=25\\5y-z=5\\x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y-5z-5y+z=25-5\\5y-z=5\\x-y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-4z=20\\5y=z+5\\x=y+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=-5\\y=\dfrac{z+5}{5}=\dfrac{-5+5}{5}=0\\x=0+3=3\end{matrix}\right.\)
8: \(\left\{{}\begin{matrix}2x+y=7\\x-y+2z=7\\z-3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+3y=21\\3x-3y+6z=21\\z-3y=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6x+3y+3x-3y+6z=21+21\\6x+3y+z-3y=21-5\\z-3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+6z=42\\6x+z=16\\z-3y=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6x+4z=28\\6x+z=16\\z-3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+4z-6x-z=28-16\\6x+z=16\\3y=z+5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3z=12\\6x=16-z\\3y=z+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=4\\x=\dfrac{16-z}{6}=\dfrac{16-4}{6}=2\\y=\dfrac{z+5}{3}=\dfrac{4+5}{3}=3\end{matrix}\right.\)
\(3.\left\{{}\begin{matrix}x+y+z=6\\2x-y+3z=9\\x+z=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6-4=2\\2x+3z=9+2=11\\x+z=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2\\2x+3z=11\\2x+2z=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\z=3\\x=4-3=1\end{matrix}\right.\\ 5.\left\{{}\begin{matrix}2x+3y-z=11\\x-y+2z=-7\\x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y-z=11\\2z=-7-3=-10\\x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=11-5=6\\z=\dfrac{-10}{2}=-5\\x-y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3y=6\\z=2\\2x-2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\z=2\\x-y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2\\z=2\\x=3+0=3\end{matrix}\right.\\ 8.\left\{{}\begin{matrix}2x+y=7\\x-y+2z=7\\z-3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=7\\x-y+2z=7\\6y-2z=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=7\\x+5y=17\\z-3y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10x+5y=35\\x+5y=17\\z-3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=18\\x+5y=17\\z-3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\5y=17-2=15\\z=3y-5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{15}{5}=3\\z=3\cdot3-5=4\end{matrix}\right.\)
Giải:
Tổng số kẹo của Mai và Lan là:
32 + 36 = 68 (cái kẹo)
Theo bài ra ta có sơ đồ:
Theo sơ đồ ta có:
Trung bình mỗi bạn có số kẹo là:
(68 + 6) : 2 = 37 (cái)
Số kẹo của Minh là:
37 + 6 = 43 (cái)
Đáp số: 43 cái
2 lần số kẹo của Minh là:
6x3+32+36=18+68=86(viên)
Số kẹo của Minh là 86:2=43(viên)
(2x+1)+(4x+2)+...+(400x+200)
\(=\left(2x+1\right)+2\left(2x+1\right)+...+200\left(2x+1\right)\)
\(=\left(2x+1\right)\left(1+2+...+200\right)\)
\(=\left(2x+1\right)\cdot\dfrac{200\left(200+1\right)}{2}=20100\left(2x+1\right)\)
Để A nguyên thì \(2024⋮x-2\)
=>\(x-2\in\){1;-1;2;-2;4;-4;8;-8;11;-11;22;-22;23;-23;44;-44;46;-46;88;-88;92;-92;184;-184;253;-253;506;-506;1012;-1012;2024;-2024}
=>x\(\in\){3;1;4;0;6;-2;10;-6;13;-9;24;-20;25;-21;46;-42;48;-44;90;-86;94;-90;186;-182;255;-251;508;-504;1014;-1010;2026;-2022}
Ta thấy :
\(45^{10}=9^{10}.5^{10}=3^{20}.5^{10}=\overline{...1}.\overline{...5}=\overline{.....5}\) (vì số tận cùng là 3 và 5)
\(5^{40}=\overline{.....5}\) (vì số tận cùng là 5)
\(\Rightarrow45^{10}-5^{40}=\overline{.....0}\)
mà \(25^{20}=5^{40}=\overline{.....5}\) (vì số tận cùng là 5)
\(\Rightarrow45^{10}-5^{40}:25^{20}=\overline{.....0}\)
\(\Rightarrow45^{10}-5^{40}⋮25^{20}\) \(\left(dpcm\right)\)
Thay x=4 và y=3 vào biểu thức, ta được:
\(\dfrac{2\cdot4+3\cdot3}{4^2-3^2}=\dfrac{8+9}{7}=\dfrac{17}{7}\)
A = \(\dfrac{2x+3y}{x^2-y^2}\)
Thay \(x=4;y=3\) vào A ta có:
A = \(\dfrac{2.4+3.3}{4^2-3^2}\)
A = \(\dfrac{8+9}{16-9}\)
A = \(\dfrac{17}{7}\)
:
Theo bài ra ta có: \(\left\{{}\begin{matrix}86-11⋮a\\142-27⋮a\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}75⋮a\\115⋮a\end{matrix}\right.\) ⇒ a \(\in\) ƯC(75; 115)
75 = 3.52; 115 = 5.23 ⇒ ƯCLN(75; 115) = 5
⇒ a \(\in\) Ư(5) = {1; 5}
vì a > 27 nên không có giá trị nào của a thỏa mãn đề bài
GIÚP MÌNH VÓI MÌNH THẤY ĐỀ BÀI CÓ GÌ ĐÓ SAI MONG CÁC BẠN SỦA GÚP VÀ GIẢ ,VẼ HÌNH NỮA NHÉ
MÌNH CẢM ƠN
a) Xét tam giác ABH và tam giác DBH có:
AB = BD (g.t)
BH chung
HA = HD (g.t)
b) Ta có: Góc BHA = Gó BHD =90*
=> HE là trung trực
=> EA = ED
=> Tam giác AED cân
12:1,8:0,75
\(=\dfrac{12}{1,8}:\dfrac{3}{4}=\dfrac{20}{3}\cdot\dfrac{4}{3}=\dfrac{80}{9}\)
\(12:1,8:0,75\\ =12:\dfrac{9}{5}:\dfrac{3}{4}\\ =12\times\dfrac{5}{9}\times\dfrac{4}{3}\\ =\dfrac{12\times5\times4}{9\times3}\\ =\dfrac{4\times5\times4}{9}\\ =\dfrac{80}{9}\)