K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2023

a) Ta có :

\(AB=AC\) (Δ ABC cân tại A)

\(\Rightarrow AE+BE=AD+DC\)

mà \(AE=BE\) (CE là trung tuyến nên E là trung điểm AB)

      \(AD=DC\) (BD là trung tuyến nên D là trung điểm AC)

\(\Rightarrow AE=AD\)

Xét Δ ABD và Δ ACE có :

\(AB=AC\) (Δ ABC cân tại A)

Góc A chung

\(AE=AD\left(cmt\right)\)

⇒ Δ ABD = Δ ACE (góc, cạnh, góc)

\(\Rightarrow BD=CE\)

b) Xét tứ giác BCDE có :

\(\widehat{EBC}=\widehat{DCB}\) (Δ ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\))

\(BD=CE\left(cmt\right)\)

⇒ Tứ giác BCDE là hình thang cân

c) Ta có :

CE là trung tuyến Δ ABC

BD là trung tuyến Δ ABC

⇒ ED là đường trung bình Δ ABC

\(\Rightarrow ED=\dfrac{1}{2}BC\)

mà H là trung điểm BC (Δ ABC cân tại A nên AH vừa là đường cao và trung tuyến)

\(\Rightarrow ED=BH\)

Xét tứ giác BHDE có :

ED song song BH (BCDE là hình thang cân nên ED song song BC)

\(ED=BH\left(cmt\right)\)

⇒ Tứ giác BHDE là hình bình hành.

7 tháng 8 2023

Mink trình bày theo ý hiểu nhé

Vì MN // AC và MP // AB, ta có các cặp góc tương đương:

=>Góc MNP = Góc BAC (do MN // AC và MP // AB)

=>Góc ANM = Góc ABC (do MN // AC và tam giác ANM là tam giác đồng dạng với tam giác ABC)

=>Góc NPA = Góc MAC (do MP // AB và tam giác MNP là tam giác đồng dạng với tam giác MAB)

Ta có cặp góc tương đương: Góc PAM = Góc CAB (do MP // AB)

=> cặp góc đối nhau:  Góc MNP = Góc BAC và Góc PAM = Góc CAB; Góc MNP = Góc PAM và Góc NPA = Góc ANM.

Vậy tứ giác ANMP là hình bình hành.

b) Để đoạn thẳng NP là nhỏ nhất, điểm M nằm ở trung điểm của BC.

Khi M nằm ở trung điểm của BC (hay AM = MC), ta có tứ giác ANMP là hình bình hành với đường chéo NP.

Trong hình bình hành, đoạn thẳng NP (đoạn chéo) là cực tiểu khi nó bằng chiều cao kẻ từ đỉnh A xuống đoạn thẳng BC. Khi M nằm ở trung điểm của BC, thì AM = MC, tức là đoạn thẳng NP chính là chiều cao của tam giác ABC kẻ từ đỉnh A xuống BC.

Vậy để NP là nhỏ nhất, điểm M phải nằm ở trung điểm của BC.

7 tháng 8 2023

\(x^2+3y^2+2xy-18\left(x+y\right)=73\)

\(\Leftrightarrow x^2+3y^2+2xy-18x-18y-73=0\)

\(\Leftrightarrow x^2-2\left(9-y\right)x+3y^2-18y-73=0\)

\(\Delta'=\left(9-y\right)^2-\left(3y^2-18y-73\right)\)

\(=81-18y+y^2-3y^2+18y+73\)

\(=-2y^2+154\)

\(=-2\left(y^2-77\right)\)

Phương trình có nghiệm khi \(\)

\(\Delta'\ge0\Leftrightarrow-2\left(y^2-77\right)\ge0\Leftrightarrow y^2-77\le0\)

\(\Leftrightarrow y^2\le77\Leftrightarrow-\sqrt[]{77}\le y\le\sqrt[]{77}\)

Phương trình có 2 nghiệm là 

\(\left[{}\begin{matrix}x_1=9-y+\sqrt[]{-2\left(y^2-77\right)}\\x_2=9-y-\sqrt[]{-2\left(y^2-77\right)}\end{matrix}\right.\) \(\left(-\sqrt[]{77}\le y\le\sqrt[]{77}\right)\)

7 tháng 8 2023

loading...

7 tháng 8 2023

a) \(x^4+8x+63\)

\(=x^4+4x^3+9x^2-4x^3-16x^2-36x+7x^2+28x+63\)

\(=x^2\left(x^2+4x+9\right)-4x\left(x^2+4x+9\right)+7\left(x^2+4x+9\right)\)

\(=\left(x^2+4x+9\right)\left(x^2-4x+7\right)\)

7 tháng 8 2023

c) \(\left(x^2+2x+7\right)+\left(x^2-2x+4\right)\left(x^2+2x+3\right)\left(1\right)\)

Ta có : \(x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)

\(\Rightarrow x^2+2x+4=\dfrac{x^3-8}{x-2}\)

\(\left(1\right)\Rightarrow\left[\left(\dfrac{x^3-8}{x-2}+3\right)\right]+\left(x^2-2x+4\right)\left[\left(\dfrac{x^3-8}{x-2}-1\right)\right]\)

\(=\left[\left(\dfrac{x^3-3x-14}{x-2}\right)\right]+\left(x^2-2x+4\right)\left[\left(\dfrac{x^3-2x-5}{x-2}\right)\right]\)

\(=\dfrac{1}{x-2}\left[x^3-3x-14+\left(x^2-2x+4\right)\left(x^3-2x-5\right)\right]\)

image

0
6 tháng 8 2023

A= 8x3 - 12x2y + 12xy2 - y3 + 12x2 - 12xy + 3y2 + 6x - 3y + 11

Ta có:

8x3 - 12x2y + 12xy2 - y3 = (2x - y)3 = 93 = 729

12x2 - 12xy + 3y2 = 4x2 - 4xy + y2 + 8x2 - 8xy + 2y2 

                             = (2x - y)2 + 2 (4x2 - 4xy + y2)

                             = (2x - y)2 + 2(2x - y)2

                            = 92 + 2.92

                            = 243

6x - 3y = 3(2x - y) = 3.9 = 27

Vậy A= 8x3 - 12x2y + 12xy2 - y3 + 12x2 - 12xy + 3y2 + 6x - 3y + 11 = 729 + 243 + 27 =999

6 tháng 8 2023

giúp mik với ạ

HQ
Hà Quang Minh
Giáo viên
6 tháng 8 2023

\(2,\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)-6\left(x+1\right)+2050y\\ =x^2+6x+9-x^2+9-6x-6+2050y\\ =2050y+12\\ 3,\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\\ =x^3+y^3+x^3-y^3-2x^3\\ =0\)