Cho tam giác ABC có góc A=90°,đường cao AD,AB=8cm, AC=6cm.
a, CM tam giác BAC đồng dạng với tam giác ADC
b, Tính BC,AD
c, Kẻ DE vuông góc AB.CM tam giác AEH đồng dạng với tam giác ACB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi vận tốc thực của ca nô là x ( km/h ) ĐK: x>4
- Vận tốc của ca nô khi đi xuôi dòng là : x +4 (km/h)
- Vận tốc của ca nô khi ngược dòng là : x -4 (km/h)
- Vì tổng thời gian cả đi và về mất 2h nên ta có pt :
15/ (x +4 ) +15/ (x-4) = 2
(=) 15.(x+4) +15.(x-4) = 2.(x+4).(x-4)
(=) 15x-60+15x+60-2x²+32=0
(=) -2x²+30x+32=0
(=) x= 16 (TMĐK) và x=-1 (KTM)
Vậy vận tốc riêng của ca nô là 16km/h
Chúc bạn học tốt!
Ta có:\(N=\frac{4x+1}{4x^2+2}\Leftrightarrow N.4x^2+2N=4x+1\)
\(x^2\cdot4N-2.2x+\left(2N+1\right)=0\)
Xét \(\Delta'=4-\left(2N+1\right)\cdot4N=-8N^2-4N+4\ge0\)
Đến đây bạn chặn N là được nhé ! Ắt sẽ có Max
a) \(x^2+2x+4^n-2^{n+1}+1=0\)
\(\Leftrightarrow x^2+2x+1+2^{2n}+2^{n+1}+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(2^{2n}-2\cdot2^n+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+1=0\\2^n-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\n=0\end{cases}}}\)
Vậy x=-1 và n=0
\(\frac{2x-4}{3}=\frac{4-3x}{5}\)
\(\Leftrightarrow\frac{\left(2x-4\right)5}{15}=\frac{\left(4-3x\right)3}{15}\)
\(\Rightarrow10x-20=12-9x\)
\(\Leftrightarrow10x+9x=20+12\)
\(\Leftrightarrow19x=32\)
\(\Leftrightarrow x=\frac{32}{19}\)
Vậy tập nghiệm của phương trình trên là:\(S=\left\{\frac{32}{19}\right\}\)
#hoktot<3#
\(\frac{2x-4}{3}=\frac{4-3x}{5}\)
\(\Leftrightarrow\frac{5\left(2x-4\right)}{15}=\frac{3\left(4-3x\right)}{15}\)
\(\Leftrightarrow5\left(2x-4\right)=3\left(4-3x\right)\)
\(\Leftrightarrow10x-20=12-9x\)
\(\Leftrightarrow10x-20-12+9x=0\)
\(\Leftrightarrow19x-32=0\)
\(\Leftrightarrow19x=32\)
\(\Leftrightarrow x=\frac{32}{19}\)
Cho hình thang ABCD(AB//CD) và C+D=90 . Gọi M,N lần lượt là trung điểm của AB và CD .C/m: MN=CD-AB/2
a) Vì ABCD là hình thang cân có AB // CD nên:
AC = BD (1)
Xét ∆ADC và ∆BCD, ta có:
AC = BD (chứng minh trên )
AD = BC (ABCD cân)
CD cạnh chung
⇒ΔACD=ΔBCD(c.c.c)⇒ΔACD=ΔBCD(c.c.c)
⇒ACDˆ=BDCˆ⇒ACD^=BDC^
Hay OCDˆ=ODCˆOCD^=ODC^
Suy ra tam giác OCD cân tại O
Suy ra: (tính chất tam giác cân) (2)
Từ (1) và (2) suy ra: OA = OB
Lại có: MD=3MO(gt)⇒NC=3NOMD=3MO(gt)⇒NC=3NO
Trong tam giác OCD, ta có: MOMD=NONC=13MOMD=NONC=13
Suy ra: MN // CD (Định lí đảo của định lí Ta-lét )
Ta có: OD = OM + MD = OM + 3OM = 4OM
Trong tam giác OCD, ta có: MN // CD
⇒OMOB=MNAB⇒OMOB=MNAB (Hệ quả định lí Ta-lét)
⇒MNAB=OM2OM=12⇒MNAB=OM2OM=12
Vậy: AB=2MN=2.1,4=2,8(cm)AB=2MN=2.1,4=2,8(cm)
b) Ta có: CD−AB2=5,6−2,82=2,82=1,4(cm)CD−AB2=5,6−2,82=2,82=1,4(cm)
Vậy: MN=CD−AB2