K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 4

Bài 5:

Thể tích hình lập phương lớn:

$196:5\times 8=313,6$ (cm3)

 

AH
Akai Haruma
Giáo viên
11 tháng 4

Bài 6:

Thời gian ô tô đi quãng đường AB (không kể thời gian nghỉ):

15 giờ 57 phút - 10 giờ 35 phút - 1 giờ 22 phút = 4 giờ

Vận tốc của ô tô là:

$180:4=45$ (km/h)

12 tháng 4

loading...    

a) ∆ABC vuông tại A (gt)

⇒ ∠ABC + ∠BCA = 90⁰ (hai góc nhọn trong tam giác vuông phụ nhau)

b) Do CE là đường phân giác của ∆ABC (gt)

⇒ CE là tia phân giác của ∠ACB

⇒ ∠ACE = ∠BCE

⇒ ∠ACE = ∠HCE

Xét hai tam giác vuông: ∆ACE và ∆HCE có:

CE là cạnh chung

∠ACE = ∠HCE (cmt)

⇒ ∆ACE = ∆HCE (cạnh huyền - góc nhọn)

⇒ AC = HC (hai cạnh tương ứng)

c) Do ∆ACE = ∆HCE (cmt)

⇒ AE = HE (hai cạnh tương ứng)

⇒ E nằm trên đường trung trực của AH (1)

Do AC = HC (cmt)

⇒ C nằm trên đường trung trực của AH (2)

Từ (1) và (2) ⇒ CE là đường trung trực của AH

Mà I là giao điểm của AH và CE (gt)

⇒ I là trung điểm của AH

⇒ IA = IH

d) Trên tia đối của tia MA lấy điểm D sao cho AM = DM

⇒ M là trung điểm của AD

Do M là trung điểm của BC (gt)

⇒ BM = CM

Xét ∆ABM và ∆DCM có:

AM = DM

∠AMB = ∠DMC (đối đỉnh)

BM = CM (cmt)

⇒ ∆ABM = ∆DCM (c-g-c)

⇒ ∠BAM = ∠CDM (hai góc tương ứng)

Mà ∠BAM và ∠CDM là hai góc so le trong

⇒ AB // CD

Mà AB ⊥ AC (∆ABC vuông tại A)

⇒ CD ⊥ AC

Do ∆ABM = ∆DCM (cmt)

⇒ AB = CD (hai cạnh tương ứng)

Xét hai tam giác vuông: ∆ABD và ∆CDB có:

AB = CD (cmt)

DB là cạnh chung

⇒ ∆ABD = ∆CDB (hai cạnh góc vuông)

⇒ AD = BC (hai cạnh tương ứng)

Mà M là trung điểm của AD (cmt)

⇒ AD = 2AM

⇒ BC = 2AM

11 tháng 4

ta có : (x-13+y)2024+(x-6-y)2024=0

do (x-13+y)2024 ≥ 0 ∀ x,y 

(x-6-y)2024  ≥ 0 ∀ x,y

⇒ (x-13+y)2024+(x-6-y)2024 ≥ 0

Dấu "=" xảy ra khi x-13+y=0 

                              x-6-y=0

⇔ x+y = 13   (1)

     x-y =6       (2)

Từ (1) và (2) suy ra x=9,5   và y = 3,5 

Vậy .... 

11 tháng 4

       Đây là dạng toán nâng cao chuyên đề tổng hiệu lồng nhau, cấu trúc thi chuyên, thi học sinh giỏi các cấp, thi violympic. Hôm nay olm.vn sẽ hướng dẫn em giải chi tiết dạng này như sau:

                     Giải

Theo bài ra ta có sơ đồ:

Theo sơ đồ ta có:

Trâu nặng số ki-lô-gam là: (750 - 20): 2 = 365 (kg)

Tổng số ki-lô-gam của bò và lợn là: 750 - 365 = 385 (kg)

Ta có sơ đồ:

Lợn nặng số ki-lô-gan là:

(385 - 85): 2  = 150 (kg)

Bò nặng số ki-lô-gam là: 385 - 150 = 235 (kg)

Đáp số: 235 kg 

 

11 tháng 4

AH
Akai Haruma
Giáo viên
11 tháng 4

Lời giải:

$359-95=(359+1)-(95+1)=360-96 = 264$

26 tháng 6

359-59 = (359+5)-(95+5)= 364-100=264

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔHBA~ΔABC

=>\(\dfrac{HB}{AB}=\dfrac{BA}{BC}\)

=>\(BA^2=BH\cdot BC\)

b: 

Xét ΔABC có

M,N lần lượt là trung điểm của AB,AC

=>MN là đường trung bình của ΔABC

=>MN//BC và MN=1/2BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

Hình thang BMNC có \(\widehat{MBC}=\widehat{NCB}\)

nên BMNC là hình thang cân

ΔABC vuông cân tại A

mà AH là đường cao

nên AH là đường trung tuyến

=>\(AH=\dfrac{BC}{2}=MN\)

c: Xét ΔCAB có

CM,AH là các đường trung tuyến

CM cắt AH tại K

Do đó: K là trọng tâm của ΔCAB

=>\(AK=\dfrac{2}{3}AH=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{3}BC\)

=>BC=3AK

11 tháng 4

Mình cần lời giải chi tiết ạ

a: Sau 1 năm thì dân số của thành phố A là:

\(3000000\left(1+1,8\%\right)=3054000\left(người\right)\)

b: Sau 3 năm thì dân số của thành phố A là:

\(3000000\left(1+1,8\%\right)^3\simeq3164933\left(người\right)\)

a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔBAC~ΔBHA

=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)

=>\(BA^2=BH\cdot BC\)

b: 

Xét ΔBAC vuông tại A và ΔACD vuông tại C có

\(\widehat{ABC}=\widehat{CAD}\left(=90^0-\widehat{HAB}\right)\)

Do đó: ΔBAC~ΔACD

=>\(\dfrac{AC}{CD}=\dfrac{BA}{AC}\)

=>\(AC^2=AB\cdot CD\)