chứng minh rằng có hai số tự nhiên bất kì không thuộc một số phần tử các hợp chất trong mỗi phân số tự nhiên không tồn tại trong một số các phần tử trong hệ huong trình theo giả thiết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


fan FA chó cái cục shit nhà bạn :))
\(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\left|a-b\right|+\frac{12}{\left|a-b\right|}\)
Áp dụng BĐT AM-GM cho 2 số không âm:
\(VT\ge2\sqrt{\left|a-b\right|\cdot\frac{12}{\left|a-b\right|}}=4\sqrt{3}\)
Dấu "=" tự xét.

ĐKXĐ
\(mx^4+mx^3+\left(m+1\right)x^2+mx+1\)
\(=\left(mx^4+mx^3+mx^2+mx\right)+\left(x^2+1\right)\)
=\(mx\left(x^3+x^2+x+1\right)+\left(x^2+1\right)\)
\(=mx\left(x+1\right)\left(x^2+1\right)+\left(x^2+1\right)\)
\(=\left(x^2+1\right).\left[mx\left(x+1\right)+1\right]>0\left(\forall x\right)\)
\(=>mx^2+mx+1>0\left(\forall x\right)\)
\(=>PT\hept{\begin{cases}mx^2+mx+1=0\left(zô\right)nghiệm\forall x\\m>0\end{cases}}\)
\(\hept{\begin{cases}\Delta< 0\\m>0\end{cases}=>\hept{\begin{cases}m^2-4m< 0\\m>0\end{cases}=>\hept{\begin{cases}m\left(m-4\right)< 0\\m>0\end{cases}=>0< m< 4}}}\)
=> m có 3 giá trị là 1,2,3 nha

ĐK \(\hept{\begin{cases}x\ge5\\x\le-2\end{cases}}\)
\(\Rightarrow x^2-3x-10< x^2-4x+4\)
<=> x<14
=> (a;b)=(5;14)
=> a+b=19

1+5+10-6=10 trung tony tv co ai la phan cua anh tony tv khong?

Từ giả thiết ta có: \(\hept{\begin{cases}AB=AC=a\\BC=a\sqrt{2}\end{cases}}\)
\(\Rightarrow p=\frac{AB+BC+AC}{2}=a\left(\frac{2+\sqrt{2}}{2}\right)\)
\(\Rightarrow r=\frac{S}{p}=\frac{2}{2+\sqrt{2}}\)

Xét \(\Delta\)ABC đều, có độ dài cạnh bằng a
Theo định lý sin ta có: \(\frac{BC}{\sin\widehat{BAC}}=2R\Leftrightarrow\frac{a}{\sin60^o}=2\cdot4\Leftrightarrow a=8\cdot\widehat{60^o}=4\sqrt{3}\)
Vậy diện tích tam giác cần tính là: \(S_{\Delta ABC}=\frac{1}{2}AB\cdot AC\cdot\sin\widehat{BAC}=\sin\left(4\sqrt{3}\right)^2\cdot\sin60^o=12\sqrt{3}\left(cm^2\right)\)
Nguồn: Hoàng Ngọc Khánh


tk chó tuấn
Sao chửi nhau thế
Kb hem 😊