K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

F=x2+2xy+y2-x-y-12 

= (x + y)^2 - (x + y) - 12 

= (x + y)(x + y - 1) - 12

đặt x + y = t

F = t(t - 1) - 12

= t^2 - t - 12

=  (t - 4)(t + 3)

G=(x2-3x-1)2-12(x2-3x-1)+27

đăth x^2 - 3x - 1 = t

G = t^2 - 12t + 27

= (t - 3)(t - 9)

có t = x^2 - 3x - 1

thay vào 

Câu F ( kiểm tra lại đề )

 Câu G . Đặt x^2 -3x-1=t

 t^2 -12t+27 ( thực hiện pp tách)

2 tháng 8 2020

khó ha

2 tháng 8 2020

\(bđt< =>\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(< =>a^2+2ab+b^2\ge4ab\)

\(< =>a^2+b^2\ge2ab\)

\(< =>\left(a-b\right)^2\ge0\)*đúng*

Vậy ta có điều phải chứng minh

2 tháng 8 2020

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

1 tháng 9 2020

Ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)

\(\frac{b}{ab}+\frac{a}{ab}-\frac{4}{a+b}\ge0\)

\(\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\ge0\)

\(a^2+2ab+b^2-4ab\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)

Đăngr thức xảy ra <=> a = b 

2 tháng 8 2020

Cho a = b = c = 1 vào thì đề sai

2 tháng 8 2020

Để ý phần mẫu \(2bc\le b^2+c^2\)

chắc hướng làm là như vậy @@

2 tháng 8 2020

Gọi giao điểm của FN và CD là V.

Ta có : ABCD là hình bình hành 

=> AB//CD; BC//AD ; AB = DC ( t/c hình bình hành )

Mà D,C,M thẳng hàng => AB // CM

=> ABN = MCN ( 2 góc so le trong ) 

Do BN//DF ( N thuộc BC ; F thuộc AD ) và BD // FN ( gt ) 

=> BDFN  là hbh => BD = FN

Lại do EM//BD ;  DM // BE ( E thuộc AB;M thuộc DC)

=> BEMD là hbh => BD = EM 

=> FN = EM

Ta thấy : FN // BD ; EM // BD => FN // EM => FV // EM

\(\Rightarrow\frac{FV}{EM}=\frac{CV}{CM}\)( theo hệ quả định lí ta lét ) 

và CN // DF ( Vì N thuộc BC ; F thuộc AD )

\(\Rightarrow\frac{DV}{CV}=\frac{FV}{VN}\Leftrightarrow\frac{DV}{DC}=\frac{FV}{FN}\)( theo định lí ta lét )

Mà FN = EM ( cmt ) \(\Rightarrow\frac{FV}{FN}=\frac{FV}{EM}\Leftrightarrow\frac{CV}{CM}=\frac{DV}{DC}\Leftrightarrow\frac{CV}{DV}=\frac{CM}{DC}\)

Ta có : NV // BD ( gt ) \(\Rightarrow\frac{CN}{NB}=\frac{CV}{DV}\)( theo định lí ta lét ) 

          DC = AB ( cmt ) \(\Rightarrow\frac{CM}{AB}=\frac{CM}{DC}\)

\(\Rightarrow\frac{CN}{NB}=\frac{CM}{AB}\left(and\right)...\widehat{MCN}=\widehat{ABN}\left(Cmt\right)\)

\(\Rightarrow\Delta MCN\approx\Delta ABN\left(c.g.c\right)\)

\(\Rightarrow\widehat{MNC}=\widehat{ANB}\)( Định nghĩa 2 tam giác đồng dạng )

mà \(\widehat{ANB}+\widehat{ANC}=180\)( 2 góc kề bù )

\(\Rightarrow\widehat{MNC}+\widehat{ANC}=\widehat{AMN}=180\)

\(\Leftrightarrow A,M,N\)thẳng hàng ( ĐPCM )

1 tháng 8 2020

Câu hỏi của phạm duy - Toán lớp 8 - Học toán với OnlineMath 

Vo TKHD copy link de tham khao loi giai nha :3

1 tháng 8 2020

Ta có BĐT sau:

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)

\(\Leftrightarrow a^3+b^3+c^3+ab^2+bc^2+ca^2\ge2a^2b+2b^2c+2c^2a\)

Sử dụng AM - GM ta dễ có được:

\(a^3+ab^2\ge2\sqrt{a^4b^2}=2a^2b\)

\(b^3+bc^2\ge2\sqrt{b^4c^2}=2b^2c\)

\(c^3+c^2a\ge2\sqrt{c^4a^2}=2c^2a\)

\(\Rightarrow BĐT\) đầu tiên đúng

Khi đó ta có:

\(a^2+b^2+c^2\ge a^2b+b^2c+c^2a\Rightarrow P\ge a^2b+b^2c+c^2a+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)

Một vài đánh giá cơ bản rồi đặt ẩn phụ rồi xét đạo hàm phát ra nhé

1 tháng 8 2020

@huybip5cc, bn giải kĩ ra giúp mk nhé, mk dốt lắm, nhìn vậy ko hiểu đâu ạ, mơn nh!

1 tháng 8 2020

Chứng minh \(\frac{m^2}{p}+\frac{n^2}{q}\ge\frac{\left(m+n\right)^2}{p+q}\) với \(p,q>0\)(*) (dễ chứng minh bằng biến đổi tương đương).

Áp dụng BĐT (*) vào bài toán, ta có:

\(M=\frac{a^3}{2016a+2017b}+\frac{b^3}{2017a+2016b}\)

\(=\frac{a^4}{2016a^2+2017ab}+\frac{b^4}{2017ab+2016b^2}\)

\(=\frac{\left(a^2\right)^2}{2016a^2+2017ab}+\frac{\left(b^2\right)^2}{2017ab+2016b^2}\)

\(\ge\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}\)(1)

Mà \(ab\le\frac{a^2+b^2}{2}\)nên \(\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}\ge\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034.\frac{a^2+b^2}{2}}=\frac{2^2}{2016.2+4034.\frac{2}{2}}=\frac{2}{4033}\)(2)

Từ (1) và (2) ta có \(M\ge\frac{2}{4033}.\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=1.\)

Vậy \(M_{min}=\frac{2}{4033}\)khi \(a=b=1.\)

2 tháng 8 2020

M=\(\left[\frac{a^3}{2016a+2017b}+\frac{a\left(2016a+2017b\right)}{4033^2}\right]+\left[\frac{b^3}{2017a+2016b}+\frac{b\left(2017a+2016b\right)}{4033^2}\right]-\frac{2016\left(a^2+b^2\right)+4034ab}{4033^2}\)

\(\ge\frac{2a^2}{4033}+\frac{2b^2}{4033}-\frac{2016\left(a^2+b^2\right)+4034\frac{a^2+b^2}{2}}{4033^2}=\frac{a^2+b^2}{4033}=\frac{2}{4033}\)

dấu "=" xảy ra khi và chỉ khi a=b=1

1 tháng 8 2020

Đặt h(x) = x4 + a.x3 + b.x2 + c.x + d

h(1)  = 1 => 1 + a + b + c + d = 2

Tương tự với h(2), h(4),... ta được 4 phương trình bậc một 4 ẩn, dễ dàng giải ra kết quả.

2 tháng 8 2020

xét g(x)=x2+1 có g(1)=2; g(2)=5; g(4)=17; g(-3)=10

ta có f(x)=h(x)-g(x)thì f(x) bậc 4 của hệ số x4 là 1 và f(1)=f(2)=f(4)=f(-3)

=> f(x)=(x-1)(x-2)(x-4)(x+3)

=> f(x)=(x2-3x+2)(x2-x-12)=x4-4x3-7x2+34x-24

=> h(x)=x4-4x3-6x2+34x-25

31 tháng 7 2020

+) \(A=x^8+x+1=\left(x^8-x^2\right)+\left(x^2+x+1\right)=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)

Ta có : \(x^6-1=\left(x^3+1\right)\left(x^3-1\right)=\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)\)

Thay vào A được : \(A=x^2\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x^2\left(x^3+1\right)\left(x-1\right)+1\right]=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

Câu dưới tương tự...

31 tháng 7 2020

x8 + x + 1 = x8 + x4 - x4 + x2 - x2 + x + 1

                  = ( x8 + x4 + 1 ) - ( x4 + x2 + 1 ) + ( x2 + x + 1 ) ( 1 )

trong đó :

x4 + x2 + 1 = x2 + 2x2 - x2 + 1

                  = ( x4 + 2x2 + 1 ) - x2

                  = ( x2 + 1 )2 - x2

                  = ( x2 - x + 1 )( x2 + x + 1 ) ( 2 )

x8 + x4 + 1 = x8 + 2x4 - x4 + 1

                  = ( x8 + 2x+ 1 ) - x4

                  = ( x4 + 1 ) - ( x2 )2

                  = ( x4 - x2 + 1 )( x4 + x2 + 1 )

                  = ( x4 - x2 + 1 )( x2 - x + 1 )( x2 + x + 1 )

Thế ( 2 ) , ( 3 ) vào ( 1 ) ta được :

x8 + x + 1 = ( x4 - x2 + 1 )( x2 - x + 1 )( x2 + x + 1 ) - ( x2 - x + 1 )( x2 + x + 1 ) + ( x2 + x + 1 )

                = ( x2 + x + 1 )[ ( x4 - x2 + 1 )( x2 - x + 1 ) - ( x2 - x + 1 ) + 1 )

                = ( x2 + x + 1 )( x6 - x5 + x3 - x2 + 1 )