Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ
F=x2+2xy+y2-x-y+12
G=(x2-3x-1)2-12(x2-3x-1)+27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(bđt< =>\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(< =>a^2+2ab+b^2\ge4ab\)
\(< =>a^2+b^2\ge2ab\)
\(< =>\left(a-b\right)^2\ge0\)*đúng*
Vậy ta có điều phải chứng minh
Ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)
\(\frac{b}{ab}+\frac{a}{ab}-\frac{4}{a+b}\ge0\)
\(\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\ge0\)
\(a^2+2ab+b^2-4ab\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)
Đăngr thức xảy ra <=> a = b
Gọi giao điểm của FN và CD là V.
Ta có : ABCD là hình bình hành
=> AB//CD; BC//AD ; AB = DC ( t/c hình bình hành )
Mà D,C,M thẳng hàng => AB // CM
=> ABN = MCN ( 2 góc so le trong )
Do BN//DF ( N thuộc BC ; F thuộc AD ) và BD // FN ( gt )
=> BDFN là hbh => BD = FN
Lại do EM//BD ; DM // BE ( E thuộc AB;M thuộc DC)
=> BEMD là hbh => BD = EM
=> FN = EM
Ta thấy : FN // BD ; EM // BD => FN // EM => FV // EM
\(\Rightarrow\frac{FV}{EM}=\frac{CV}{CM}\)( theo hệ quả định lí ta lét )
và CN // DF ( Vì N thuộc BC ; F thuộc AD )
\(\Rightarrow\frac{DV}{CV}=\frac{FV}{VN}\Leftrightarrow\frac{DV}{DC}=\frac{FV}{FN}\)( theo định lí ta lét )
Mà FN = EM ( cmt ) \(\Rightarrow\frac{FV}{FN}=\frac{FV}{EM}\Leftrightarrow\frac{CV}{CM}=\frac{DV}{DC}\Leftrightarrow\frac{CV}{DV}=\frac{CM}{DC}\)
Ta có : NV // BD ( gt ) \(\Rightarrow\frac{CN}{NB}=\frac{CV}{DV}\)( theo định lí ta lét )
DC = AB ( cmt ) \(\Rightarrow\frac{CM}{AB}=\frac{CM}{DC}\)
\(\Rightarrow\frac{CN}{NB}=\frac{CM}{AB}\left(and\right)...\widehat{MCN}=\widehat{ABN}\left(Cmt\right)\)
\(\Rightarrow\Delta MCN\approx\Delta ABN\left(c.g.c\right)\)
\(\Rightarrow\widehat{MNC}=\widehat{ANB}\)( Định nghĩa 2 tam giác đồng dạng )
mà \(\widehat{ANB}+\widehat{ANC}=180\)( 2 góc kề bù )
\(\Rightarrow\widehat{MNC}+\widehat{ANC}=\widehat{AMN}=180\)
\(\Leftrightarrow A,M,N\)thẳng hàng ( ĐPCM )
Ta có BĐT sau:
\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
\(\Leftrightarrow a^3+b^3+c^3+ab^2+bc^2+ca^2\ge2a^2b+2b^2c+2c^2a\)
Sử dụng AM - GM ta dễ có được:
\(a^3+ab^2\ge2\sqrt{a^4b^2}=2a^2b\)
\(b^3+bc^2\ge2\sqrt{b^4c^2}=2b^2c\)
\(c^3+c^2a\ge2\sqrt{c^4a^2}=2c^2a\)
\(\Rightarrow BĐT\) đầu tiên đúng
Khi đó ta có:
\(a^2+b^2+c^2\ge a^2b+b^2c+c^2a\Rightarrow P\ge a^2b+b^2c+c^2a+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Một vài đánh giá cơ bản rồi đặt ẩn phụ rồi xét đạo hàm phát ra nhé
@huybip5cc, bn giải kĩ ra giúp mk nhé, mk dốt lắm, nhìn vậy ko hiểu đâu ạ, mơn nh!
Chứng minh \(\frac{m^2}{p}+\frac{n^2}{q}\ge\frac{\left(m+n\right)^2}{p+q}\) với \(p,q>0\)(*) (dễ chứng minh bằng biến đổi tương đương).
Áp dụng BĐT (*) vào bài toán, ta có:
\(M=\frac{a^3}{2016a+2017b}+\frac{b^3}{2017a+2016b}\)
\(=\frac{a^4}{2016a^2+2017ab}+\frac{b^4}{2017ab+2016b^2}\)
\(=\frac{\left(a^2\right)^2}{2016a^2+2017ab}+\frac{\left(b^2\right)^2}{2017ab+2016b^2}\)
\(\ge\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}\)(1)
Mà \(ab\le\frac{a^2+b^2}{2}\)nên \(\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}\ge\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034.\frac{a^2+b^2}{2}}=\frac{2^2}{2016.2+4034.\frac{2}{2}}=\frac{2}{4033}\)(2)
Từ (1) và (2) ta có \(M\ge\frac{2}{4033}.\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=1.\)
Vậy \(M_{min}=\frac{2}{4033}\)khi \(a=b=1.\)
M=\(\left[\frac{a^3}{2016a+2017b}+\frac{a\left(2016a+2017b\right)}{4033^2}\right]+\left[\frac{b^3}{2017a+2016b}+\frac{b\left(2017a+2016b\right)}{4033^2}\right]-\frac{2016\left(a^2+b^2\right)+4034ab}{4033^2}\)
\(\ge\frac{2a^2}{4033}+\frac{2b^2}{4033}-\frac{2016\left(a^2+b^2\right)+4034\frac{a^2+b^2}{2}}{4033^2}=\frac{a^2+b^2}{4033}=\frac{2}{4033}\)
dấu "=" xảy ra khi và chỉ khi a=b=1
Đặt h(x) = x4 + a.x3 + b.x2 + c.x + d
h(1) = 1 => 1 + a + b + c + d = 2
Tương tự với h(2), h(4),... ta được 4 phương trình bậc một 4 ẩn, dễ dàng giải ra kết quả.
xét g(x)=x2+1 có g(1)=2; g(2)=5; g(4)=17; g(-3)=10
ta có f(x)=h(x)-g(x)thì f(x) bậc 4 của hệ số x4 là 1 và f(1)=f(2)=f(4)=f(-3)
=> f(x)=(x-1)(x-2)(x-4)(x+3)
=> f(x)=(x2-3x+2)(x2-x-12)=x4-4x3-7x2+34x-24
=> h(x)=x4-4x3-6x2+34x-25
+) \(A=x^8+x+1=\left(x^8-x^2\right)+\left(x^2+x+1\right)=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)
Ta có : \(x^6-1=\left(x^3+1\right)\left(x^3-1\right)=\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)\)
Thay vào A được : \(A=x^2\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^2\left(x^3+1\right)\left(x-1\right)+1\right]=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
Câu dưới tương tự...
x8 + x + 1 = x8 + x4 - x4 + x2 - x2 + x + 1
= ( x8 + x4 + 1 ) - ( x4 + x2 + 1 ) + ( x2 + x + 1 ) ( 1 )
trong đó :
x4 + x2 + 1 = x2 + 2x2 - x2 + 1
= ( x4 + 2x2 + 1 ) - x2
= ( x2 + 1 )2 - x2
= ( x2 - x + 1 )( x2 + x + 1 ) ( 2 )
x8 + x4 + 1 = x8 + 2x4 - x4 + 1
= ( x8 + 2x4 + 1 ) - x4
= ( x4 + 1 ) - ( x2 )2
= ( x4 - x2 + 1 )( x4 + x2 + 1 )
= ( x4 - x2 + 1 )( x2 - x + 1 )( x2 + x + 1 )
Thế ( 2 ) , ( 3 ) vào ( 1 ) ta được :
x8 + x + 1 = ( x4 - x2 + 1 )( x2 - x + 1 )( x2 + x + 1 ) - ( x2 - x + 1 )( x2 + x + 1 ) + ( x2 + x + 1 )
= ( x2 + x + 1 )[ ( x4 - x2 + 1 )( x2 - x + 1 ) - ( x2 - x + 1 ) + 1 )
= ( x2 + x + 1 )( x6 - x5 + x3 - x2 + 1 )
F=x2+2xy+y2-x-y-12
= (x + y)^2 - (x + y) - 12
= (x + y)(x + y - 1) - 12
đặt x + y = t
F = t(t - 1) - 12
= t^2 - t - 12
= (t - 4)(t + 3)
G=(x2-3x-1)2-12(x2-3x-1)+27
đăth x^2 - 3x - 1 = t
G = t^2 - 12t + 27
= (t - 3)(t - 9)
có t = x^2 - 3x - 1
thay vào
Câu F ( kiểm tra lại đề )
Câu G . Đặt x^2 -3x-1=t
t^2 -12t+27 ( thực hiện pp tách)