cho biểu thức A = \(\left(\frac{x-2\sqrt{3x}+3}{x-3}\right)\left(\sqrt{4x}+\sqrt{12}\right)\)
a ) tìm điều kiện của x để biểu thức A có nghĩa
b) rút gọn biểu thức A
c) tính giá trị của A khi x = \(4-2\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x, y lần lượt là thời gian vòi 1 , vòi 2 chảy 1 mình đầy bể ( x, y >12, giờ )
=> 1 giờ vòi 1 chảy được \(\frac{1}{x}\)(bể )
1 giờ vòi 2 chảy được \(\frac{1}{y}\)(bể )
mà 1 giờ cả hai vòi chảy được \(\frac{1}{12}\)(bể )
=> Ta có phương trình: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\)(1)
Vì vòi 1 chảy trong 5 giờ rồi khóa lại và mở vòi 2 trong 15 giờ thì được 75% bể nên ta có:
\(5.\frac{1}{x}+15.\frac{1}{y}=\frac{75}{100}\)(2)
Từ (1); (2) giải hệ với ẩn \(\frac{1}{x};\frac{1}{y}\)ta có:
\(\hept{\begin{cases}\frac{1}{x}=\frac{1}{20}\\\frac{1}{y}=\frac{1}{30}\end{cases}}\)<=> x = 20; y = 30
Vậy vò 1 chảy 1 mình trong 20 giờ thì đầy bể; vòi hai chảy 1 mình trong 30 giờ thì đẩy bể.
\(pt\)\(\Leftrightarrow\)\(9 . ( x - 2 ) - ( x^2 - 4 )= 0\) ( bình phương vế lên )
\(\Leftrightarrow\)\(9. ( x - 2 ) - ( x + 2 )(x-2)=0\)
\(\Leftrightarrow\)\(( x - 2 )(7 - x )=0\)
\(\Leftrightarrow\)\(x - 2 = 0\) \(hoặc \) \(7 - x = 0\)
\(\Leftrightarrow\)\(x = 2 \) \(hoặc\) \(x= 7\)
Gọi thời gian chảy của vòi 2 để bể đầy khi chảy 1 mình là : x giờ (x>0)
Nếu hai vòi cùng chảy vào bể thì 1 giờ chảy được : \(\frac{1}{6}\)(bể)
Nếu vòi 1 chảy một mình thì 1 giờ chảy được : \(\frac{1}{10}\)(bể)
Ta có phương trình :
\(\frac{1}{x}+\frac{1}{10}=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{x}=\frac{1}{15}\)
\(\Leftrightarrow x=15\left(h\right)\)
Vậy nếu vòi thứ 2 chảy một mình thì sau 15 giờ bể đầy.
Gọi thời gian đội 1 làm một mình là \(x\left(h\right)\left(x>0\right)\)
\(1h\) đội 1 làm được \(\frac{1}{x}\left(V\right)\)
Gọi thời gian đội 2 làm một mình là \(y\left(h\right)\left(y>0\right)\)
\(1h\) đội 2 làm được \(\frac{1}{y}\left(V\right)\)
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)
\(\Leftrightarrow y-x=6\)
\(\Rightarrow y=6+x\)
\(\Rightarrow\frac{1}{x}+\frac{1}{6+x}=\frac{1}{4}\)
\(\Leftrightarrow4\left(6+x\right)+4x=x^2+6x\)
\(\Leftrightarrow24+8x=x^2+6x\)
\(\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-4\left(l\right)\end{cases}}\)
Vậy đội 1 làm trong \(6h\); đội 2 làm trong \(12h\)
a) \(ĐKXĐ:x\ge0;x\ne3\)
b) \(A=\left(\frac{x-2\sqrt{3x}+3}{x-3}\right)\left(\sqrt{4x}+\sqrt{12}\right)\)
\(\Leftrightarrow A=\left(\frac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)}\right)\left(2\sqrt{x}+2\sqrt{3}\right)\)
\(\Leftrightarrow A=\left(\frac{\sqrt{x}-\sqrt{3}}{\sqrt{x}+\sqrt{3}}\right).2\left(\sqrt{x}+\sqrt{3}\right)\)
\(\Leftrightarrow A=2\left(\sqrt{x}-\sqrt{3}\right)\)
\(\Leftrightarrow A=2\sqrt{x}-2\sqrt{3}\)
c) Thay \(x=4-2\sqrt{3}\)vào A, ta có :
\(A=2\sqrt{4-2\sqrt{3}}-2\sqrt{3}\)
\(\Leftrightarrow A=2\sqrt{\left(1-\sqrt{3}\right)^2}-2\sqrt{3}\)
\(\Leftrightarrow A=2\left(\sqrt{3}-1\right)-2\sqrt{3}\)
\(\Leftrightarrow A=2\sqrt{3}-2-2\sqrt{3}\)
\(\Leftrightarrow A=-2\)