Cho tam giác ABC có A(2;−1). Đường phân giác trong góc B và C có phương trình lần
lượt là d1 :x−2y+1=0 và d2 :x+y+3=0. Viết phương trình đường thẳng chứa các cạnh của tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi D là giao điểm của hai đường phân giác trong góc B và góc C
+) Trên BC lấy điểm M sao cho: AM vuông BD tại H
=> Đường thẳng AM \(\perp\)BH => AM có dạng: 2x + y + a = 0
mà A ( 2; -1) \(\in\)AM => 2.2 + ( -1) + a = 0 <=> a = -3
=> phương trình đt: AM : 2x + y - 3 = 0
H là giao của AM và BD => Tọa độ điểm H là nghiệm hệ: \(\hept{\begin{cases}x-2y+1=0\\2x+y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)=> H ( 1; 1)
Lại có: BH vừa là đường cao vừa là đường phân giác \(\Delta\)ABM => \(\Delta\)ABM cân => H là trung điểm AM
=> \(\hept{\begin{cases}x_M=2x_H-x_A=2.1-2=0\\y_M=2y_H-y_B=2.1-\left(-1\right)=3\end{cases}}\)=> M ( 0; 3 )
+) Trên BC lấy lấy điêm N sao cho AN vuông CD tại K
Làm tương tự như trên ta có:
AN có dạng: x - y + b = 0 mà A thuộc AN => 2 + 1 + b = 0 => b = - 3
K là giao điểm của AN và CD => K ( 0; -3 )
K là trung điểm AN => N ( -2; -5 )
=> Đường thẳng BC qua điểm M và N
\(\overrightarrow{MN}\left(-2;-8\right)\)=> VTPT của BC là: \(\overrightarrow{n}\left(8;-2\right)\)
=> Phương trình BC : \(8\left(x-0\right)+\left(-2\right)\left(y-3\right)=0\)
<=> 4x -y + 3 = 0
Vậy: BC : 4x - y + 3 = 0
Một lượng khí chứa trong bình kín có thể tích 10 lít, áp suất 106 Pa . Người ta lấy bớt 5.105 Pa, nhiệt độ của khí không đổi. Áp suất của khí còn lại trong bình sẽ là:
A. 7,5.105 Pa B. 1,5.106 Pa C. 5.106 Pa D. 5.105 Pa
Chắc chắn 100% luôn nha, cô mik mới dạy sáng nay