K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2020

aetusrkyi

29 tháng 4 2020

em chưa hoc 

28 tháng 4 2020

ĐK: \(\hept{\begin{cases}1-\frac{2}{x}\ge0\\2x-\frac{8}{x}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x-2}{x}\ge0\\\frac{2x^2-8}{x}\ge0\end{cases}}\)

<=> \(-2\le x< 0\) hoặc  \(x\ge2\)

TH1:  \(-2\le x< 0\)

Bất phương trình đúng

TH2: \(x\ge2\)(@@)

bất pt <=> \(2\sqrt{\frac{x-2}{x}}+\sqrt{\frac{2\left(x-2\right)\left(x+2\right)}{x}}\ge x\)

<=> \(\sqrt{\frac{x-2}{x}}\left(2+\sqrt{2\left(x+2\right)}\right)\ge x\)

<=> \(\sqrt{\frac{x-2}{x}}\left(\frac{2x}{\sqrt{2\left(x+2\right)}-2}\right)\ge x\)

<=> \(2\sqrt{\frac{x-2}{x}}+2\ge\sqrt{2\left(x+2\right)}\)

<=> \(4\left(1-\frac{2}{x}\right)+4+8\sqrt{1-\frac{2}{x}}\ge2x+4\)

<=> \(4\sqrt{1-\frac{2}{x}}\ge x-2+\frac{4}{x}\)

<=> \(16\left(1-\frac{2}{x}\right)\ge x^2+4+\frac{16}{x^2}-4x+8-\frac{16}{x}\)

<=> \(4\ge x^2+\frac{16}{x^2}-4x+\frac{16}{x}\)

<=> \(\left(x-\frac{4}{x}\right)^2-4\left(x-\frac{4}{x}\right)+4\le0\)

<=> \(\left(x-\frac{4}{x}+2\right)^2\le0\) vô nghiệm vì x > 2 => \(x-\frac{4}{x}+2>2\)

Vậy -2 \(\le\) x < 0

1 tháng 5 2020

cos(90-a) + sin(90-a) - cos(90+a) - sin(90 + a) = sina + cosa + sina - cosa = 2sina

5 tháng 5 2020

Thanh cân bằng nằm ngang khi:

\(M_{P'\left(O\right)}=M_{P\left(O\right)}\)

\(\Leftrightarrow P'.OA=P.GO\)

Theo đề bài: 

\(OA=30cm\)

Mặt khác:

\(OG=\frac{AB}{2}-AO=\frac{100}{2}-30=20cm\)

Khi đó:

\(P'=P.\frac{GO}{AO}=10\cdot\frac{20}{30}=6,67N\)

Vậy để thước cân bằng và nằm ngang, ta cần treo một vật tại đầu A có trọng lượng bằng 6,67

4 tháng 5 2020

Chọn B    \(\beta\)và   \(\gamma\) ;\(\alpha\)và   \(\delta\)là các cặp góc lượng giác có điểm cuối trùng nhau.

27 tháng 4 2020

sao khó thế

27 tháng 4 2020

Ta thấy muốn loại bỏ đi mẫu số của \(\frac{a^2}{b+2c}\)thì cần dùng AM-GM cho nó và 1 đại lượng có dạng k(b+2c) (để triệt tiêu đi b+2c). Ngoài ra ta cần chú ý thêm BĐT đã cho có dấu "=" xảy ra <=> a=b=c. Khi ấy \(\frac{a^2}{b+2c}=\frac{b+2c}{9}\)

Do vậy, đánh giá mà ta nên chọn là:

\(\frac{a^2}{b+2c}+\frac{b+2c}{9}\ge2\sqrt{\frac{a^2}{b+2c}+\frac{b+2c}{9}}=\frac{2}{3}a\)

=> \(\frac{a^2}{b+2c}\ge\frac{2}{3}a-\frac{b+2c}{9}=\frac{6a-b-2c}{9}\)

Thực hiện đánh giá tương tự ta cũng có:

\(\frac{b^2}{c+2a}\ge\frac{6b-c-2a}{9};\frac{c^2}{a+2b}\ge\frac{6c-a-2b}{9}\)

Cộng theo vế của 3 BĐT ta được đpcm

Bài 1. Viết phương trình tổng quát, phương trình tham số của đường thẳng trong mỗi trường hợp sau:a) Đi qua A(1;-2) và // với đường thẳng 2x - 3y - 3 = 0.b) Đi qua hai điểm M(1;-1) và N(3;2).c) Đi qua điểm P(2;1) và vuông góc với đường thẳng x - y + 5 = 0.Bài 2. Cho tam giác ABC biết A(-4;1), B(2;4), C(2;-2).Tính khoảng cách từ điểm C đến đường thẳng AB.Bài 3. Cho tam giaùc ABC coù: A(3;-5), B(1;-3), C(2;-2).Vieát...
Đọc tiếp

Bài 1. Viết phương trình tổng quát, phương trình tham số của đường thẳng trong mỗi trường hợp sau:

a) Đi qua A(1;-2) và // với đường thẳng 2x - 3y - 3 = 0.

b) Đi qua hai điểm M(1;-1) và N(3;2).

c) Đi qua điểm P(2;1) và vuông góc với đường thẳng x - y + 5 = 0.
Bài 2. Cho tam giác ABC biết A(-4;1), B(2;4), C(2;-2).

Tính khoảng cách từ điểm C đến đường thẳng AB.

Bài 3. Cho tam giaùc ABC coù: A(3;-5), B(1;-3), C(2;-2).Vieát phöông trình toång quaùt cuûa:

a)   3 caïnh AB, AC, BC

b) Ñöôøng thaúng qua A vaø song song vôùi BC

c)Trung tuyeán AM vaø ñöôøng cao AH cuûa tam giaùc ABC

d) Ñöôøng thaúng qua troïng taâm G cuûa tam giaùc ABC vaø vuoâng goùc vôùi AC

e) Ñöôøng trung tröïc cuûa caïnh BC

Bài 4. Cho tam giaùc ABC coù: A(1 ; 3), B(5 ; 6), C(7 ; 0).:

a)  Vieát phöông trình toång quaùt cuûa 3 caïnh AB, AC, BC

b)  Viết phương trình đđöôøng trung bình song song cạnh AB

c) Viết phương trình đường thẳng qua A và cắt hai trục tọa độ tại M,N sao cho AM = AN

d) Tìm tọa độ điểm A’ là chân đường cao kẻ từ A trong  tam giaùc ABC   

Bài 5. Viết phương trình đường tròn có tâm I(1; -2) và

a) đi qua điểm A(3;5).

b) tiếp xúc với đường thẳng có pt x + y = 1.

 

0