Viết đa thức sau thảnh tích: a^6 - b^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.x^2-7x-3x+21=0\Leftrightarrow\left(x^2-7x\right)-\left(3x-21\right)=0\)
\(\Leftrightarrow x\left(x-7\right)-3\left(x-7\right)=0\Leftrightarrow\left(x-3\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=7\end{matrix}\right.\)
\(b.x^2+6x+2x+12=0\Leftrightarrow\left(x^2+6x\right)+\left(2x+12\right)=0\)
\(\Leftrightarrow x\left(x+6\right)+2\left(x+6\right)=0\Leftrightarrow\left(x+2\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)
\(c.x^2+4x+5x+20=0\Leftrightarrow\left(x^2+4x\right)+\left(5x+20\right)=0\)
\(\Leftrightarrow x\left(x+4\right)+5\left(x+4\right)=0\Leftrightarrow\left(x+5\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-4\end{matrix}\right.\)
\(Ax=Bx\Rightarrow Ax-Bx=0\Rightarrow x\left(A-B\right)=0\Rightarrow x=0\) \(\rightarrow câu.A\)
A.(0)
B.(1)
C(0,1,5)
D.(0,1,5,6)
chọn đáp án thôi là đc ak
Lời giải:
a. $x^2-y^2+8x-8y=(x^2-y^2)+(8x-8y)$
$=(x-y)(x+y)+8(x-y)=(x-y)(x+y+8)$
b. $4x^2+4xy+y^2-4x-2y=(4x^2+4xy+y^2)-(4x+2y)$
$=(2x+y)^2-2(2x+y)=(2x+y)(2x+y-2)$
c.
$x^3+y^3+4x+4y=(x^3+y^3)+(4x+4y)$
$=(x+y)(x^2-xy+y^2)+4(x+y)$
$=(x+y)(x^2-xy+y^2+4)$
d.
$=(x^3-3x^2y+3xy^2-y^3)+(x^2-y^2)=(x-y)^3+(x-y)(x+y)$
$=(x-y)[(x-y)^2+(x+y)]=(x-y)(x^2-2xy+y^2+x+y)$
e.
$x^2+3x+2=(x^2+x)+(2x+2)=x(x+1)+2(x+1)$
$=(x+1)(x+2)$
f.
$x^2-7x+6=(x^2-6x)-(x-6)=x(x-6)-(x-6)=(x-1)(x-6)$
h.
Đa thức không phân tích được thành nhân tử với hệ số nguyên.
a, Xét tứ AHCE ta có: IH = IE ; IA = IC
⇒ tứ giácAHCE là hình bình hành (1)
Mà AH \(\perp\) BC \(\equiv\) H nên ⇒ \(\widehat{AHC}\) = 900 (2)
Kết hợp (1) và (2) ta có: Tứ giác AHCE là hình chữ nhật (đpcm).
b, Xét tam giác AHC có: M là trung điểm HC; I là trung điểm AC
⇒ AM; HI lần lượt là trung tuyến của tam giác AHC
⇒ G là trọng tâm của tam giác AHC ⇒ HG = \(\dfrac{2}{3}\)HI (3)
IG = HI - HG = HI - \(\dfrac{2}{3}\)HI = \(\dfrac{1}{3}\)HI
Chứng minh tương tự ta có: KE = \(\dfrac{2}{3}\)IE = \(\dfrac{2}{3}\)HI (4) ( vì IE = HI)
IK = IE - KE = IE - \(\dfrac{2}{3}\)IE = \(\dfrac{1}{3}\)IE = \(\dfrac{1}{3}\)HI (vì HI = IE)
GK = IG + IK = \(\dfrac{1}{3}\)HI + \(\dfrac{1}{3}\)HI = \(\dfrac{2}{3}\)HI (5)
Kết hợp(3); (4); (5) ta có: HG = GK = KE (đpcm)
chưa vẽ được
tick cho mình cái
Bài tập 1
a) Chứng minh AFOE cân
Xét tam giác AOB và tam giác FOE, ta có:
- AB = FO (do B là đỉnh chéo của hình bình hành ABCD)
- AO = OF (do O là giao điểm của các đường chéo)
- AE = OF (do F nằm trên cạnh BC)
Do đó, hai tam giác AOB và FOE đồng dạng theo tỉ số 1:1.
Vậy, AFOE cân tại F.
b) Trên tia đối của tòa FB lấy điểm 1 sao cho F1 = FB. Chứng minh OF = h OE == DI
Xét tam giác F1OB và tam giác FOE, ta có:
- FB = F1B (do F1 = FB)
- FO = OF (do O là giao điểm của các đường chéo)
- BE = FE (do F nằm trên cạnh BC)
Do đó, hai tam giác F1OB và FOE đồng dạng theo tỉ số 1:1.
Vậy, OF = OE = DI.
c) Gia sư BAD =50. Tính EOF
Xét tam giác EOF, ta có:
- EO = OE (do O là giao điểm của các đường chéo)
- OF = OE = DI = 50/2 = 25
Do đó, EOF = 25^2 = 625.
Kết luận
- AFOE cân tại F
- OF = OE = DI = 25
- EOF = 625
Bài tập 2
Chứng minh 1 đổi xứng với K qua Đ
Xét tam giác AFE và tam giác BKF, ta có:
- AE = CF (do cho AE = CF)
- AF = BF (do do A và B là các đỉnh chéo của hình bình hành ABCD)
- EF = FB (do F nằm trên cạnh BC)
Do đó, hai tam giác AFE và BKF đồng dạng theo tỉ số 1:1.
Vậy, I đối xứng với K qua D.
Kết luận
I đối xứng với K qua D.
Bài tập 3
Chứng minh Nạp là hai điểm đối xứng nhau qua ở
Xét tam giác MNO và tam giác MNP, ta có:
- MN = MN (đồng nhất)
- NO = NP (do N và P lần lượt đối xứng với M qua a và b)
- MO = MP (do O là giao điểm của các đường chéo a và b)
Do đó, hai tam giác MNO và MNP đồng dạng theo tỉ số 1:1.
Vậy, N và P là hai điểm đối xứng nhau qua O.
Kết luận
N và P là hai điểm đối xứng nhau qua O.
Chúc bạn học tốt!
a2+b2+c2=(a2+2ac+c2)-2ac+b2=(a+c)2-2b2+b2=(a+b+c)(a-b+c)
mà a2+b2+c2 là số nguyên tố và a+b+c>a-b+c nên a-b+c=1
=> a+c=b+1 => a2+2ac+c2=b2+2b+1 => a2+b2=2b+1=2a+2c+1+1
=>a2-2a+1+c2-2c+1=0 => (a-1)2+(c-1)2=0=>a=c=1=>b=1
Vậy (a,b,c) cần tìm là (1,1,1)
\(\left(a^6-b^3\right)=\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)
\(=\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)