K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

Có AD \(\perp\)BC nên ta có \(\widehat{ACD}=90-\widehat{DAC}\)

cmtt có \(\widehat{AHE}=90-\widehat{DAC}\)

\(\Rightarrow\widehat{ACD}=\widehat{AHE}\)

mà \(\widehat{AFE}=\widehat{AHE}\)

\(\Rightarrow\widehat{AFE}=\widehat{ACD}\)

Xét \(\Delta\) AFE và \(\Delta\) ABC có 

\(\widehat{AFE}=\widehat{ACD}\left(cmt\right)\)

\(\widehat{BAC}chung\)

\(\Rightarrow\Delta AFE\infty\Delta ABC\left(g-g\right)\)

#cỪu

23 tháng 8 2020

a, Xét Tam giác MBC có góc BMC lớn nhất vì là góc tù

=>BC>MC>BM

còn câu B bạn viết gì mình khong hiểu

C1 : Cardano (mk chưa học )

C2 : Mode set up -> 5 -> ax^3 + bx^2 + cx + d = 0 

PT <=> \(x_1=-1,209...;x_2=2,104....\)

22 tháng 8 2020

dùng lượng giác hóa cũng được các bạn nhé 

22 tháng 8 2020

Biến đổi giả thiết \(2\left(a^2+b^2\right)-\left(a+b\right)=2ab\)

Mà ta có: \(2ab\le\frac{\left(a+b\right)^2}{2}\)nên \(2\left(a^2+b^2\right)-\left(a+b\right)\le\frac{\left(a+b\right)^2}{2}\)(*)

Theo BĐT Cauchy-Schwarz: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)nên từ (*) suy ra \(\left(a+b\right)^2-\left(a+b\right)\le\frac{\left(a+b\right)^2}{2}\)

Đặt \(s=a+b>0\)thì \(s^2-s\le\frac{s^2}{2}\Leftrightarrow\frac{s^2}{2}-s\le0\Leftrightarrow s^2-2s\le0\Leftrightarrow s\left(s-2\right)\le0\)

Mà \(s>0\)nên \(s-2\le0\Rightarrow s\le2\)hay \(a+b\le2\)

\(F=\frac{a^3}{b}+\frac{b^3}{a}+2020\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{a^4}{ab}+\frac{b^4}{ab}+2020.\frac{4}{a+b}\)\(\ge\frac{\left(a^2+b^2\right)^2}{2ab}+\frac{8080}{a+b}\ge\left(\frac{\left(a+b\right)^2}{2}+\frac{4}{a+b}+\frac{4}{a+b}\right)+\frac{8072}{a+b}\)

\(\ge3\sqrt[3]{\frac{\left(a+b\right)^2}{2}.\frac{4}{a+b}.\frac{4}{a+b}}+\frac{8072}{2}=4042\)

Đẳng thức xảy ra khi a = b = 1

22 tháng 8 2020

a) Ta có A = 4x2 - 4x + 1 = (2x - 1)2 \(\ge0\forall x\)

Dấu "=" xảy ra <=> 2x - 1 = 0 => x = 0,5

Vậy GTNN của A là 0 khi x = 0,5

b) Ta có x2 + 4y2 + 4xy = x2 + 2xy + 2xy + 4y2  = x(x + 2y)   + 2y(x + 2y) = (x + 2y)2 \(\ge0\forall x;y\)

Dấu "=" xảy ra <=> x + 2y = 0 => x = - 2y

Vậy GTNN của B là 0 khi x = -2y

22 tháng 8 2020

a) 4x2 - 4x + 1 = ( 2x - 1 )2 ≥ 0 ∀ x 

Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2

Vậy GTNN của biểu thức = 0 <=> x = 1/2

b) x2 + 4y2 + 4xy = ( x + 2y )2 ≥ 0 ∀ x ,y 

Đẳng thức xảy ra <=> x + 2y = 0 => x = -2y

Vậy GTNN của biểu thức = 0 <=> x = -2y

22 tháng 8 2020

a. \(4x-x^2+3=-\left(x-2\right)^2+7\)

Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-2\right)^2+7\le7\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy bt max = 7 <=> x = 2

b. \(2x-2x^2-7=-2\left(x-\frac{1}{2}\right)^2-\frac{13}{2}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow-2\left(x-\frac{1}{2}\right)^2-\frac{13}{2}\le-\frac{13}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow-2\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

Vậy bt max = - 13/2 <=> x = 1/2

22 tháng 8 2020

a) 4x - x2 + 3

= -( x2 - 4x + 4 ) + 7

= -( x - 2 )2 + 7

-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 )2 + 7 ≤ 7

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

Vậy GTLN của biểu thức = 7 khi x = 2

b) 2x - 2x2 - 7

= -2( x2 - x + 1/4 ) - 13/2

= -2( x - 1/2 )2 - 13/2

-2( x - 1/2 )2 ≤ 0 ∀ x => -2( x - 1/2 )2 - 13/2 ≤ -13/2

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

Vậy GTLN của biểu thức = -13/2 khi x = 1/2

21 tháng 8 2020

Ta có BĐT sau:

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

CM:    \(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

<=>   \(a^2+b^2+c^2-ab-bc-ca\ge0\)

<=>   \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)     (*)

=> BĐT (*) LUÔN ĐÚNG !!!!

=>   \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)

=>   \(3\left(ab+bc+ca\right)\le0\)

=>   \(ab+bc+ca\le0\)

VẬY TA CÓ ĐPCM.

21 tháng 8 2020

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+ac+ca\right)=0\)

Vì  \(a^2+b^2+c^2\ge0\forall a;b;c\)

\(\Rightarrow2\left(ab+bc+ca\right)\le0\)

\(\Rightarrow ab+bc+ca\le0\left(đpcm\right)\)

21 tháng 8 2020

a) \(5x\left(x-1\right)-3x\left(x-1\right)\)

\(=2x\left(x-1\right)\)

b) \(x\left(x+y\right)-5x-5y\)

\(=x\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x-5\right)\left(x+y\right)\)

c) \(x\left(x-y\right)+y\left(y-x\right)\)

\(=\left(x-y\right)\left(x-y\right)\)

\(=\left(x-y\right)^2\)

d) \(x^2+xy+x=x\left(x+y+1\right)\)

21 tháng 8 2020

a. 5x ( x - 1 ) - 3x ( x - 1 )

= ( 5x - 3x ) ( x - 1 )

b. x ( x + y ) - 5x - 5y

= x ( x + y ) - 5 ( x + y )

= ( x - 5 ) ( x + y )

c. x ( x - y ) + y ( y - x )

= x ( x - y ) - y ( x - y )

= ( x - y )2

 d. x2 + xy + x 

= x ( x + y + 1 )

21 tháng 8 2020

làm ơn giúp mk

21 tháng 8 2020

- 6x2 - 9xy + 15x

= - 3x ( 3y + 2x - 5 )

2x ( x - 3 ) + y ( x - 3 ) + ( 3 - x )

= ( 2x + y ) ( x - 3 ) - ( x - 3 )

= ( 2x + y + 1 ) ( x - 3 )