AE nào muốn K thì vô đây nhá !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải :
\(\left|-3,45\right|+\frac{1,5}{3}\)
\(=3,45+0,5\)
\(=3,95\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{3c}{3d}=\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\)
=> \(\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\)(đpcm)
Ta có :
\(\frac{a}{b}=\frac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{3c}{3d}=\frac{a-2c}{b-2d}=\frac{a-3c}{b-3d}\)
=> đpcm
Ta có :
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}\left(1\right)\)
Lại có :
\(\frac{ac}{bd}=\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=\frac{a^2}{b^2}\left(\text{do}\frac{a}{b}=\frac{c}{d}\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó \(\frac{a^2-c^2}{b^2-d^2}=\frac{\left(bk\right)^2-\left(dk\right)^2}{b^2-d^2}=\frac{b^2k^2-d^2k^2}{b^2-d^2}=\frac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\)(1)
\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\)(2)
Từ (1) và (2) => \(\frac{a^2-c^2}{b^2-d^2}=\frac{ac}{bd}\left(\text{đpcm}\right)\)
\(M=\left|\frac{1}{3}-x\right|+5\ge5\forall x\)
Dấu ''='' xảy ra khi x = 1/3
Vậy GTNN của M bằng 5 tại x = 1/3
\(N=-\left|x+\frac{2}{3}\right|+2\le2\forall x\)
Dấu ''='' xảy ra khi x = -2/3
Vậy GTLN của N bằng 2 tại x = -2/3
tìm giá trị nhỏ nhất của M=5+|1/3-x|
Vì với mọi x (Giá trị tuyệt đối của một số luôn không âm)
Nên với mọi x
Ta có:
Vậy với x =
Vì a,b,c là 3 số nguyên tố >3 ⇒ a,b cùng lẻ ⇒ d=b-a chia hết cho 2 (1)
Vì a,b,c là 3 số nguyên tố >3 ⇒ a,b,c không chia hết cho 3
d chia 3 có số dư là 0,1,2
TH1: d=3k+1 (k∈ N)
Khi đó: b=a+3k+1
c= b+d = a+6k+2
Nếu a chia 3 dư 1 thì a+2 chia hết cho 3 ⇒ c chia hết cho 3 (loại)
Nếu a chia 3 dư 2 thì a+1 chia hết cho 3 ⇒ b chia hết cho 3 (loại)
TH2: d=3k+2 (k∈N)
Khi đó b= a+3k+2
c= a+6k+4=a+1+6k+3
Tương tự như TH1 ⇒ loại
Do đó d chia hết cho 3 (2)
Từ (1),(2) suy ra d chia hết cho 2.3 =6 [ vì (2,3)=1]
Vì a,b,c là 3 số nguyên tố >3 ⇒ a,b cùng lẻ ⇒ d=b-a chia hết cho 2 (1)
Vì a,b,c là 3 số nguyên tố >3 ⇒ a,b,c không chia hết cho 3
d chia 3 có số dư là 0,1,2
TH1: d=3k+1 (k∈ N)
Khi đó: b=a+3k+1
c= b+d = a+6k+2
Nếu a chia 3 dư 1 thì a+2 chia hết cho 3 ⇒ c chia hết cho 3 (loại)
Nếu a chia 3 dư 2 thì a+1 chia hết cho 3 ⇒ b chia hết cho 3 (loại)
TH2: d=3k+2 (k∈N)
Khi đó b= a+3k+2
c= a+6k+4=a+1+6k+3
Tương tự như TH1 ⇒ loại
Do đó d chia hết cho 3 (2)
Từ (1),(2) suy ra d chia hết cho 2.3 =6 [ vì (2,3)=1]
Chúc bạn học tốt ^^
1 số chính phương khi chia cho 3 dư 1 \(\Rightarrow\) p2 - q2 + r2 - s2 ⋮ 3
1 số chính phương khi chia cho 8 dư 0, 1 hoặc 4 mà p, q, r, s là số nguyên tố lớn hơn 3 nên p2 , q2 , r2 ,s2 chia 8 dư 1 (1 số lẻ chia cho 1 số chẵn thì số dư của nó là số lẻ) suy ra p2 - q2 + r2 - s2 ⋮8
Suy ra p2 - q2 + r2 - s2 ⋮24
P=p^2-q^2=(p^2-1)-(q^2-1)
Để cm P chia hết cho 24 thì cm P chia hết cho 3 và 8.
Cm chia hết cho 3
đặt p=3q+r(1<=r<=2). r=1=>p=3q+1
=>p-1=3q chia hết cho 3 r=2=>p=3q+2
=>p+1=3q+3 chia hết cho 3. => p^2-1 chia hết cho 3.
Chia hết cho 8 ta cm chia hết cho 2 và 4 giống kiểu ở trên ý bạn
Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3
Tương tự, ta được q2-1 chia hết cho 3
Suy ra: p2-q2 chia hết cho 3(1)
Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8
Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8
Suy ra :p2-q2 chia hết cho 8(2)
Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24
Trả lời câu hỏi chính dùm
Vào câu hỏi của ng khác xong hỏi là zô zuyên nhé
Ht
____ Vanilla ___
\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{1}{2008}\)
\(=1+\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{1}{2008}+1\right)\)
\(=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2008}=2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}\right)\)
Khi đó \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}{2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}\right)}=\frac{1}{2009}\)