K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{3\left(2x+1\right)}{20}+1>\dfrac{3x+52}{10}\)

=>\(\dfrac{6x+3}{20}+\dfrac{20}{20}>\dfrac{6x+104}{20}\)

=>6x+23>6x+104

=>23>104(sai)

vậy: \(x\in\varnothing\)

b: \(\dfrac{4x-1}{2}+\dfrac{6x-19}{6}< =\dfrac{9x-11}{3}\)

=>\(\dfrac{3\left(4x-1\right)+6x-19}{6}< =\dfrac{2\left(9x-11\right)}{6}\)

=>12x-3+6x-19<=18x-22

=>-22<=-22(luôn đúng)

Vậy: \(x\in R\)

1: \(\left(\dfrac{1,5+1-0,75}{2,5+\dfrac{5}{3}-1,25}+\dfrac{0,375-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{-0,625+0,5-\dfrac{5}{11}-\dfrac{5}{12}}\right):\dfrac{1890}{2005}+115\)

\(=\left(\dfrac{3\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}{5\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}+\dfrac{3\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}{-5\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}\right)\cdot\dfrac{2005}{1890}+115\)

\(=0\cdot\dfrac{2005}{1890}+115=115\)

2: \(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{0,6-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-0,16-\dfrac{4}{125}-\dfrac{4}{625}}\)

\(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)

\(=\dfrac{1}{4}+\dfrac{3}{4}=1\)

8 tháng 8 2024

Nó còn tùy từng trường hợp cụ thể của đề bài chứ em?

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=12^2-5^2=144-25=119\)

=>\(AC=\sqrt{119}\left(cm\right)\)

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{5^2}{12}=\dfrac{25}{12}\left(cm\right)\\CH=\dfrac{119}{12}\left(cm\right)\end{matrix}\right.\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC=\dfrac{25}{12}\cdot\dfrac{119}{12}=\dfrac{25}{144}\cdot119\)

=>\(AH=\sqrt{119}\cdot\sqrt{\dfrac{25}{144}}=\dfrac{5}{12}\cdot\sqrt{119}\left(cm\right)\)

8 tháng 8 2024

Ta thấy

\(x+23⋮31\)

\(x+8⋮15\Rightarrow\left(x+8\right)+15=x+23⋮15\)

\(\Rightarrow\left(x+23\right)=BC\left(15;31\right)\) x nhỏ nhất khi \(x+23=BCNN\left(15;31\right)\)

\(\Rightarrow BCNN\left(15;31\right)=15x31=465\)

\(\Rightarrow x+23=465\Rightarrow x=442\)

 

A=104-100+96-92+88-84+...-12+8

=(104-100)+(96-92)+...+(16-12)+8

=4+4+...+4+8

\(=4\cdot12+8=48+8=56\)