Tính (a+b)(a+b^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(^{\left(2x+1\right)^2-\left(x+2\right)^2-3x\left(x+2\right)=\left(2x+1\right)^2-\left(x+2\right)\left(x+2+3x\right)}\)
\(=\left(2x+1\right)^2-\left(x+2\right)\left(4x+2\right)=\left(2x+1\right)^2-2\left(x+2\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(1-2x-4\right)=\left(2x+1\right)\left(-3-2x\right)=-\left(2x+1\right)\left(3+2x\right)\)
\(\left(2x+1\right)^2-\left(x+2\right)^2-3x\left(x+2\right)\)
\(=4x^2+4x+1-\left(x^2+4x+4\right)-3x^2-6x\)
\(=4x^2+4x+1-x^2-4x-4-3x^2-6x\)
\(=-6x-3\)
\(=-3\left(x+2\right)\)

\(F=2x^2-10x+20=2\left(x-\frac{5}{2}\right)^2+\frac{15}{2}\ge\frac{15}{2},\forall x\)
\(\Rightarrow minF=\frac{15}{2}\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
F = 2x2 - 10x + 20
= 2( x2 - 5x + 25/4 ) + 15/2
= 2( x - 5/2 )2 + 15/2 ≥ 15/2 ∀ x
Đẳng thức xảy ra <=> x - 5/2 = 0 => x = 5/2
=> MinF = 15/2 <=> x = 5/2

a) \(x^2+10xx+26+y^{22}+2\)
Nhóm và rút nhân tử chung là UCLN ra ngoài, sau đó kết hợp:
\(11x^2+26+y^{22}+2y\)
c) \(4x^2-12x^2-y^2+2y^2+1\)
=\(-8x^2+y^2+1\)
d) \(\left(y+2z-3\right)\left(y-3-2z\right)=\left[\left(y-3\right)+2z\right]\left[\left(y-3\right)-2z\right]\)
\(=\left(y-3\right)^2-4z^2\)
x2 + 10x + 26 + y2 + 2y
= ( x2 + 10x + 25 ) + ( y2 + 2y + 1 )
= ( x + 5 )2 + ( y + 1 )2
4x2 - 12x - y2 + 2y + 1 ( thiếu đề hay sao ý )
( y + 2z - 3 )( y - 3 - 2z )
= [ y - ( 3 - 2z ) ][ ( y + ( 3 - 2z ) ]
= y2 - ( 3 - 2z )2

1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)
Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.
2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương
\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)
\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)
Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:
+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)
\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)
+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)
\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.
3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:
---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)
Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau
Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau
---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)
Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)
Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)
-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)
Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.

a)
\(-4x\left(-2x+1\right):-4x-\left(x+2\right)=8\)
\(-2x+1-x-2=8\)
\(-3x-1=8\)
\(-3x=9\)
\(x=-3\)
b)
\(-\frac{1}{2}x^2\left(-4x^2+6x-2\right):\left(\frac{-1}{2}x^2\right)+4\left(x^2-2x+1\right)==0\)
\(-4x^2+6x-2+4x^2-8x+4=0\)
\(-2x+2=0\)
\(-2x=-2\)
\(x=1\)

A B C D
Vì ABCD là hình thang cân nên \(AD=BC,\widehat{ADC}=\widehat{BCD}\)
Xét 2 tam giác ADC và BCD có: DC chung, \(\widehat{ADC}=\widehat{BCD}\), AD=BC
\(\Rightarrow\Delta ADC=\Delta BCD\left(c.g.c\right)\Rightarrow\widehat{DAC}=\widehat{CBD}=90^0\Rightarrow AC\perp AD\)

a) ( x - 5 )( x - 3 ) - ( x + 2 )( 2x - 1 ) + x2 = 5
<=> x2 - 8x + 15 - ( 2x2 + 3x - 2 ) + x2 = 5
<=> 2x2 - 8x + 15 - 2x2 - 3x + 2 = 5
<=> -11x + 17 = 5
<=> -11x = -12
<=> x = 12/11
b) -2x( x - 1 ) + ( x - 1 )( 2x + 3 ) = x + 4
<=> -2x2 + 2x + x2 + x - 3 = x + 4
<=> 3x - 3 = x + 4
<=> 3x - x = 4 + 3
<=> 2x = 7
<=> x = 7/2
Bài làm :
\(a,\left(x-5\right)\left(x-3\right)-\left(x+2\right)\left(2x-1\right)+x^2=5\)
\(\Leftrightarrow x^2-3x-5x+15-\left(2x^2-x+4x-2\right)+x^2=5\)
\(\Leftrightarrow\left(x^2-2x^2+x^2\right)+\left(-3x-5x+x-4x\right)=5-2-15\)
\(\Leftrightarrow-11x=-12\)
\(\Leftrightarrow x=\frac{12}{11}\)
\(b,-2x\left(x-1\right)+\left(x-1\right)\left(2x+3\right)=x+4\)
\(\Leftrightarrow-2x^2+2x+2x^2+3x-2x-3-x=4\)
\(\Leftrightarrow\left(-2x^2+2x^2\right)+\left(2x+3x-2x-x\right)=4+3\)
\(\Leftrightarrow2x=7\)
\(\Leftrightarrow x=\frac{2}{7}\)
Học tốt nhé
bn coi lại đề thử mình thấy đề bài này sai sai rồi
kết quả là 0