K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2020

Ta có: \(x^3+y^3+z^2=3xyz+1\)

   \(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=1\)

   \(\Leftrightarrow\left(x+y+z\right)^3-3xy\left(x+y+z\right)-3z\left(x+y\right)\left(x+y+z\right)=1\)

   \(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(zx+zy\right)-3xy\right]=1\)

   \(\Leftrightarrow\left(x+y+z\right)\left[x^2+y^2+z^2+2xy+2yz+2zx-3xy-3yz-3zx\right]=1\)

   \(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=1\)

Đến đây các bạn tự giải nhé ^_^

13 tháng 9 2020

Bn gì ơi, đây kh pk mk nhờ bn giải hộ, mk nổi hứng đăng câu hỏi lên thôi nên lm hết đi nhá

16 tháng 9 2020

Sử dụng BĐT Cauchy Schwarz ta dễ có:

\(P=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)

\(=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)

\(\ge\frac{\left(x+y\right)^2}{x+y-2}\)

Ta cần chứng minh: \(\frac{\left(x+y\right)^2}{x+y-2}\ge8\)

\(\Leftrightarrow\left(x+y\right)^2-8\left(x+y\right)+16\ge0\)

\(\Leftrightarrow\left(x+y-4\right)^2\ge0\)( ĐPCM )

16 tháng 9 2020

Có : \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)

\(=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)

Theo BĐT Cô - si ta có :

\(\frac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\frac{x^2}{y-1}.4\left(y-1\right)}=4x\)

\(\frac{y^2}{x-1}+4\left(x-1\right)\ge4y\)

Do đó ; \(\frac{x^2}{y-1}+\frac{y^2}{x-1}+4.\left(x+y-2\right)\ge4\left(x+y\right)\)

\(\Leftrightarrow\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)

Hay : \(P\ge8\)

Dấu "=" xảy ra khi \(x=y=2\)

Vậy \(P_{min}=8\) khi \(x=y=2\)

12 tháng 9 2020

cungf lớp nek

12 tháng 9 2020

Cái này làm sao mà phân tích được ;-; Tớ bày cách khác nhé :>

9x2 + y2 + 2z2 - 18x + 4z - 6y + 20

= ( 9x2 - 18x + 9 ) + ( y2 - 6y + 9 ) + ( 2z2 + 4z + 2 )

= ( 3x - 3 )2 + ( y - 3 )2 + 2( z2 + 2z + 1 )

= ( 3x - 3 )2 + ( y - 3 )2 + 2( z + 1 )2

12 tháng 9 2020

Ta có: \(\frac{x^2}{yz}+\frac{y^2}{xz}+\frac{z^2}{xy}\Rightarrow x^3+y^3+z^3-3xyz=0\Rightarrow\orbr{\begin{cases}x=y=z\\x+y+z=0\end{cases}}\)

Vì nghiệm của phương trình là bộ ba số khác O nên các số a,b,c là ba số khác nhau và khác O

+) Nếu: \(\frac{a}{b-c}=\frac{b}{c-a}=\frac{c}{a-b}=k\ne0\Rightarrow a=k\left(b-c\right);b=k\left(c-a\right);c=k\left(a-b\right)\)

\(\Rightarrow a+b+c=0\Rightarrow a+b=-c\)

Từ: \(\frac{a}{b-c}=\frac{b}{c-a}\Rightarrow\frac{a}{b+a+b}=\frac{b}{-a-b-a}\Rightarrow\left(a+b\right)^2+a^2+b^2=0\)

\(\Rightarrow a=b=0\Rightarrow a=b=c=0\)(loại)

+) Nếu: \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\Rightarrow\frac{a}{b-c}=\frac{b}{a-c}+\frac{c}{b-a}=\frac{b\left(b-a\right)+c\left(a-c\right)}{\left(c-a\right)\left(a-b\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ba+ca-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\)

Tương tự ta có: \(\frac{b}{\left(c-a\right)^2}=\frac{c^2-cb+ab-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(2\right);\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+bc-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(3\right)\)

Từ (1),(2) và (3) \(\Rightarrow\frac{a}{\left(b-c^2\right)}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

Đặt \(m=\frac{a}{\left(b-c\right)^2};n=\frac{b}{\left(c-a\right)^2};p=\frac{c}{\left(a-b\right)^2}\Rightarrow m+n+p=0\)

\(\Rightarrow m^3+n^3+p^3=3mnp\Rightarrow\frac{m^2}{np}+\frac{n^2}{mp}+\frac{p^2}{mn}=3\left(ĐPCM\right)\)

12 tháng 9 2020
Cứ giả vờ.
12 tháng 9 2020

bó tay! =_=

13 tháng 9 2020

thiếu đề nx kìa :v

11 tháng 9 2020

a) x2 - 12x + 33

= ( x2 - 12x + 36 ) - 3

= ( x - 6 )2 - 3 ≥ -3 ∀ x

Đẳng thức xảy ra <=> x - 6 = 0 => x = 6

Vậy GTNN của biểu thức = -3 <=> x = 6 

b) 9x2 - 6x + 5

= ( 9x2 - 6x + 1 ) + 4

= ( 3x - 1 )2 + 4 ≥ 4 ∀ x 

Đẳng thức xảy ra <=> 3x - 1 = 0 => x = 1/3

Vậy GTNN cua biểu thức = 4 <=> x = 1/3

c) x2 + x + 3

= ( x2 + x + 1/4 ) + 11/4

= ( x + 1/2 )2 + 11/4 ≥ 11/4 ∀ x

Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2

Vậy GTNN của biểu thức = 11/4 <=> x = -1/2

10 tháng 9 2020

Đây là 1 bài toán cực nổi tiếng lun.

Liên quan tới 1 giả thiết của Fermat cho rằng \(2^{2^n}+1\)Là các số nguyên tố

Tuy nhiên khi xét tới n=5 tức là \(2^{2^5}+1=2^{32}+1\)thì lại sai

Vì \(\frac{2^{32}+1}{641}=6700417\)Tức là chia hết cho 641

Vậy kết quả cuối cùng là ko phải số nguyên tố nha ! :))

10 tháng 9 2020

Đây là một bài toán hay áp dụng phương pháp phân tử ,  lời giải như sau

Xét \(M=x^{32}-x^{24}+2x^{23}+x^{18}-2x^{17}-x^{10}+2x^9+1\)Phân tích M thành nhân tử ta được 

\(M=\left(x^9+x^7+1\right)\cdot\left(x^{23}-x^{21}+x^{19}-x^{17}+x^{14}-x^{10}+x^9-x^7+1\right)\)(Phần phân tích các bạn tự làm nhé )

Suy ra nếu \(x\in Z\)thì M chia hết cho \(x^9+x^7+1\)

Với x=2 thì \(M=2^{32}-2^{24}+2\cdot2^{23}+2^{18}-2\cdot2^{17}-2^{10}+2\cdot2^9+1=2^{32}+1\)Mặt khác do 2 nguyên nên M chia hết cho \(2^9+2^7+1=641\)Suy ra M là hợp số 

      Vậy \(2^{32}+1\)không là số nguyên tố  

10 tháng 9 2020

\(A=2^{32}+1\)