K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

xét BĐT \(2ab\le a^2+b^2=>\frac{a.b}{1}=a.b\le\frac{a^2+b^2}{2}\left(a,b>0\right)\)

Áp dụng , ta có

\(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge\frac{2}{\frac{x^2+y^2}{2}}+\frac{3}{x^2+y^2}=\frac{4}{x^2+x^2}+\frac{3}{x^2+y^2}=\frac{7}{x^2+y^2}\)

áp dụng BĐT bunhia có 

\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\left(\forall a,b,x,y>0\right)\)

Zậy 

\(\left(x+y\right)^2=1\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2\left(x^2+y^2\right)\)

hay \(\frac{1}{2}\le x^2+y^2\)

zậy 

\(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge\frac{2}{\frac{x^2+y^2}{2}}+\frac{3}{x^2+y^2}=\frac{7}{x^2+y^2}\ge\frac{7}{\frac{1}{2}}=14\left(dpcm\right)\)

dấu "=" xảy ra khi zà chỉ khi x=y=1/2

3 tháng 4 2020

Cách hack điểm hỏi đáp trên OLM: https://www.youtube.com/watch?v=sMvl8_N_N54

3 tháng 4 2020

chung minh tu giac abek noi tiep duoc mot duong tron

2 tháng 4 2020

Pika...........................chịu!

>-<

31 tháng 3 2020

Giải

a) Ta có : 2.x2 -2.x = 5.x 

<=> 2.x2 -3.x-5=0 : a = 2 ; b = 3 ; c = -5 

b) Ta có : x2 +2.x = m. x + m 

<=> x2 + ( 2-m ) .x - m = 0 : a = 1 ; b=2-m ; c=-m

c) Ta có : 2.x2 \(+\sqrt{2}.\left(3.x-1\right)=1+\sqrt{2}\)

<=>  2.x2  + 3.\(\sqrt{2}.x-2.\sqrt{2}-1=0\): a = 2 ; b= 3\(\sqrt{2};c=-2\sqrt{2}-1\)

31 tháng 3 2020

a) \(2x^2-2x=5+x\)

\(\Leftrightarrow2x^2-x-5=0\)với \(\hept{\begin{cases}a=2\\b=-3\\c=-5\end{cases}}\)

b) \(x^2+2x=mx+m\)

\(\Leftrightarrow x^2+\left(2-m\right)x-m=0\)với \(\hept{\begin{cases}z=1\\b=3-m\\c=-m\end{cases}}\)

c) \(2x^2+\sqrt{2}\left(3x-1\right)=1+\sqrt{2}\)

\(\Leftrightarrow2x^2+3\sqrt{2}\cdot x-2\sqrt{2}-1=0\)

với \(\hept{\begin{cases}a=2\\b=3\sqrt{2}\\c=-2\sqrt{2}-1\end{cases}}\)

30 tháng 3 2020

hệ \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x+2y\right)+\left(x-y\right)=0\\x^2-y^2+x+y=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x+2y+1\right)=0\left(1\right)\\x^2-y^2+x+y=6\left(2\right)\end{cases}}\)

Th1: x=y

pt 2<=> 2x=6

<=> x=y=3

Th2: x+2y+1=0

<=> x=-1-2y

=> pt (2) <=> \(\left(-1-2y\right)^2-y^2-1-2y+y=6\)

\(\Leftrightarrow4y^2+4y+1-y^2-1-2y+y=6\)

\(\Leftrightarrow3y^2+3y-6=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)

KL:............................

30 tháng 3 2020

Gọi số hs lớp 9A là x => số hsg của lớp 9A là \(\frac{x.60}{100}\)

Gọi số hs lớp 9B là y => số hsg của lớp 9b là \(\frac{y.75}{100}\)

=> Ta có pt (1) \(\frac{60x}{100}+\frac{75y}{100}=51\Leftrightarrow12x+15y=1020\)

Ta có hệ PT

\(\hept{\begin{cases}x+y=76\\12x+15y=1020\end{cases}}\)

Giải hệ PT trên