Cho hình thang cân ABCD ( AB//CD ) đường cao AH cắt BD tại E , F = AC giao điểm BD , AD= 20cm. DE/EB = 2/3. Tính
a) Tỉ số AB/CD
b) Tính AF
( Mọi người giúp mình nhé:33)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)ABM và \(\Delta\)KCM có: MK = MA ; MB = MC ; ^AMB = ^KMC ( đối đỉnh )
=> \(\Delta\)ABM = \(\Delta\)KCM => AB = KC (1)
Vì \(\Delta\)ABC cân có AM là đường trung tuyến => AM là đường trung trực hay KM là đường trung trực => KB = KC(2)
\(\Delta\)ABC cân => AB = AC (3)
Từ (1) ; (2) (3) => AB = AC = KB = KC => ABKC là hình thoi
b) ABKC là hình thoi => KC //AB => CD //AB mà theo đề AD //BC
=> ABCD là hình bình hành
c) \(\Delta\)ABC cân có AN kaf đường trung tuyến => AM vuông góc BC mà AD // BC => AD vuông AM => ^DAK = ^DAM = 90 độ
Ta có: BM = 1/2 . BC = 6 : 2 = 3 cm AB = 5 cm
\(\Delta\)ABM vuông tại M . Theo định lí Pitago => AM = 4 cm
=> AK = 2AM = 2.4 = 8cm
AD = BC = 6cm ( ABCD là hình bình hành )
=> S ( DAK ) = AD.AK : 2 = 6.8 : 2 = 24 ( cm^2)
d) Để ABKC kaf hình vuông; mà ABKC là hình thoi nên ^BAC = 90 độ
=> tam giác ABC Có thêm điều kiện vuông tại A thì ABKC là hình vuông.
\(x^2+2019x=2020\)
\(x\left(x+2019\right)=2020\)
Tách 2020 ra 2 thừa số có hiệu là 2019: 2020 = 1*2020 = (-1) * (-2020)
Mà thừa số x luôn bé hơn thừa số x + 2019
\(\Rightarrow x\in\left\{1;-2020\right\}\)