\(b)\frac{(sina+cosa)^2-(sina-cosa)^2}{sina.cosa}=4\)
chứng minh các hệ thức sau
\(a) \frac{cosa}{1-sina}=\frac{1+sina}{cosa}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
co nhieu cau tuong tu tren mang ban tu tm hieu nhe
\(PT\Leftrightarrow2\left(y^2-2y+1\right)=5x-x^3-4x^2+35068\)
\(\Leftrightarrow2\left(y-1\right)^2=x\left(1-x^2-4x\right)+35068\)
mình nghĩ vậy không biết đúng k :)
Bạn không ghi rõ đề nên tớ sẽ làm như này
\(\frac{12}{3-\sqrt{3}}\)
\(=\frac{36+12\sqrt{5}}{3^2-\sqrt{5^2}}\)
\(=\frac{12\left(3+\sqrt{5}\right)}{3^2-\sqrt{5^2}}\)
\(=\frac{12\left(3+\sqrt{5}\right)}{9-5}\)
\(=\frac{12\left(3+\sqrt{5}\right)}{4}\)
\(=3\left(3+\sqrt{5}\right)\)
Đặt \(t=\frac{1}{2004y}\)
Bài toán đưa về tìm x để t bé nhất
Ta có \(t=\frac{\left(x+2004\right)^2}{2004x}=\frac{x^2+2.2004x+2004^2}{2004x}\)
\(=\frac{x}{2004}+2+\frac{2004}{x}=\frac{x^2+2004^2}{2004x}+2\)(1)
Ta thấy : Theo bất đẳng thức Côsi cho 2 số nguyên dương ta có :
\(x^2+2004^2\ge2.2004.x\)
\(\Rightarrow\frac{x^2+2004^2}{2004x}\ge2\)(2)
Dấu ''='' xảy ra khi x=2004
Từ (1) và (2) \(\Rightarrow t\ge4\)
Vậy giá trị bé nhất của \(t=4\)khi \(x=2004\)
Vậy \(y_{max}=\frac{1}{2004t}=\frac{1}{8016}\)Khi \(x=2004\)
Xét \(x\ge4\)
\(BPT\Leftrightarrow x^2+x+1>x-4\)
\(\Leftrightarrow x^2+5>0\)(hiển nhiên đúng với mọi x)
Xét x<4
\(BPT\Leftrightarrow x^2+x+1>4-x\)
\(\Leftrightarrow x^2+2x-3>0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
b) khai triển hằng đẳng thức là ra
a) nhân tích chéo
\(\frac{\cos\alpha}{1-\sin\alpha}=\frac{1+\sin\alpha}{\cos\alpha}\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)\(\Leftrightarrow\cos^2\alpha+\sin^2\alpha=1\)(luôn đúng)
\(\frac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}=\frac{\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha-\sin^2\alpha-\cos^2\alpha+2\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)
\(=\frac{4\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}=4\)(đpcm)