K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2023

a) Do ABCD là hình vuôn nên: 

\(AB=BC=CD=AD\) 

Mà: \(\left\{{}\begin{matrix}AB=AM+MB\\BC=BN+NC\\CD=CP+PD\\AD=DQ+QA\end{matrix}\right.\) 

Lại có: \(AM=BN=CP=DQ\)

\(\Rightarrow MB=NC=PD=QA\left(dpcm\right)\) 

b) Xét \(\Delta QAM\) và \(\Delta NCP\) có:

\(\widehat{A}=\widehat{C}=90^o\left(gt\right)\)

\(AM=CP\left(gt\right)\)

\(QA=NC\left(cmt\right)\)

\(\Rightarrow\Delta QAM=\Delta NCP\left(c.g.c\right)\) 

c) Xét các tam giác: \(\Delta QAM,\Delta NCP,\Delta PDQ,\Delta MBN\) ta có:

\(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=90^o\left(gt\right)\)

\(AM=BN=CP=DQ\left(gt\right)\)

\(MB=NC=PD=QA\left(cmt\right)\)

\(\Rightarrow\Delta QAM=\Delta NCP=\Delta PDQ=\Delta MBN\left(c.g.c\right)\) 

\(\Rightarrow MQ=QP=PN=NM\) (các cạnh tương ứng) 

\(\Rightarrow MNPQ\) là hình thoi (1)

Xét tam giác QAM ta có:

\(\widehat{QMA}+\widehat{AQM}=180^o-90^o=90^o\) 

Mà: \(\Delta QAM=\Delta MBN\left(cmt\right)\)

\(\Rightarrow\widehat{BMN}=\widehat{AQM}\) (hai góc tương ứng) 

\(\Rightarrow\widehat{BMN}+\widehat{QMA}=90^o\)

Lại có: \(\widehat{BMN}+\widehat{QMA}+\widehat{NMQ}=180^o\)

\(\Rightarrow\widehat{NMQ}=180^o-90^o=90^o\) (2) 

Từ (1) và (2) ta có MNPQ là hình vuông 

22 tháng 11 2023

a) ���� là hình vuông nên ��=��=��=��

M��=��=��=��.

Trừ theo vế ta được ��−��=��−��=��−��=��−��

Suy ra ��=��=��=��

Xét tam giác QAM và tam giác NPC có:

góc A = góc C = 90 độ

AQ=NC(cmt)

AM=CP(gt)

=>Tam giác QAM= tam giác NPC(c.g.c)

c)=> NP = MQ ( hai cạnh tương ứng)

Chứng minh tương tự như phần b ta có: Tam giác QAM= tam giác PDQ và tam giác QAM= tam giác MBN

Khi đó: MQ=PQ, MN=MQ và góc AMQ= góc DQP

Mà góc AMQ+AQM=90 độ

=>góc DQP+ góc AQM= 90 độ

Do đó góc MQP = 90 độ

tứ giác MNPQ có bốn cạnh bằng nhau nên là hình thoi

Lại có góc MQP = 90 độ nên là hình vuông

Vậy tứ giác MNPQ là hình vuông

 

 

 

9 tháng 10 2023

Xét hbh ABCD có AB =CD;AB//CD

+) lần lượt là trung điểm của

lần lượt là nằm trên của .

       => AM//CN

27 tháng 10 2023

a) ���� là hình bình hành nên ��=�� suy ra 12��=12��

Do đó ��=��=��=��.

Tứ giác ���� có �� // ��,��=�� nên là hình bình hành.

Lại có Δ��� vuông tại  có �� là đường trung tuyến nên ��=12��=��=��.

Hình bình hành ���� có hai cạnh kề bằng nhau nên là hình thoi, khi đó hai đường chéo ��,�� vuông góc với nhau.

Tứ giác ���� là hình thoi.

5 tháng 10 2023

a/

Ta có

IA=IC (gt); IM=IK (gt) => AMCK là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Ta có

MB=MC (gt); IA=IC (gt) => MI là đường trung bình của tg ABC => MI//AB

Mà \(AB\perp AC\) 

\(\Rightarrow MI\perp AC\Rightarrow MK\perp AC\)

=> AMCK là hình thoi (Hình bình hành có 2 đường chéo vuông góc là hình thoi)

b/

Ta có

MI//AB (cmt) => MK//AB

AK//MC (cạnh đối hbh AMCK) => AK//MB

=> AKMB là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

c/

Để AMCK là hình vuông \(\Rightarrow AM\perp BC\) => AM là đường cao của tg ABC

Mà AM là trung tuyến của tg ABC (gt)

=> ABC cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến là tg cân)

=> Để AMCK là hình vuông thì tg ABC vuông cân tại A

 

22 tháng 11 2023

a) Tứ giác ���� có hai đường chéo ��,�� cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

Δ��� vuông tại  có �� là đường trung tuyến nên ��=��=��.

Vậy hình bình hành ���� có ��=�� nên là hình thoi.

b) Vì ���� là hình thoi nên �� // �� và ��=��=��.

Tứ giác ���� có �� // ��,��=�� nên là hình bình hành.

c) Để ���� là hình vuông thì cần có một góc vuông hay ��⊥��.

Khi đó Δ��� có �� vừa là đường cao vừa là đường trung tuyến nên cân tại .

Vậy Δ��� vuông cân tại  thì ���� là hình vuông.

21 tháng 11 2023

a) Δ��� vuông cân nên góc B= góc C = 45 độ

Tam giácBHE vuông tại H có góc BEH + góc B = 90 độ

Suy ra góc BEH = 90 độ - 45 độ = 45 độ nên góc B= góc BEH = 45 độ

Vậy tam giác BEH vuông tại H

b) Chứng minh tương tự như câu a ta được tam giác CFG vuông tại G nên GF=GC và HB=HE

Lại có BH=HG=GC suy ra EH=HG=GF và EH//FG ( cùng vuông góc với BC)

Tứ giác EFGH có EH//FG, EH=FG

=>tứ giác EFGH là hình bình hành 

Xét hình bình hành có một góc vuông là góc H nên là hình chữ nhật

Mà hình chữ nhật có hai cạnh kề bằng nhau là EH=HG nên là hình vuông

Vậy EFGH là hình vuông

 

21 tháng 11 2023

a) Δ��� vuông cân nên �^=�^=45∘.

Δ��� vuông tại  có ���^+�^=90∘

Suy ra ���^=90∘−45∘=45∘ nên �^=���^=45∘.

Vậy Δ��� vuông cân tại �.

b) Chứng minh tương tự câu a ta được Δ��� vuông cân tại  nên ��=�� và ��=��

Mặt khác ��=��=�� suy ra ��=��=�� và �� // �� (cùng vuông góc với ��)

Tứ giác ���� có �� // ��,��=�� nên là hình bình hành.

Hình bình hành ���� có một góc vuông �^ nên là hình chữ nhật

Hình chữ nhật ���� có hai cạnh kề bằng nhau ��=�� nên là hình vuông.

5 tháng 10 2023

\(AC\perp Oy\) (gt); \(Ox\perp Oy\) (gt) => AC//Oy => AC//OB

C/m tương tự có AB//OC

=> OBAC là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Mà \(\widehat{xOy}=90^o\)

=> OBAC là HCN

Ta có

AC=AB (Tính chất đường phân giác)

=> OBAC là hình vuông

21 tháng 11 2023

Tứ giác ���� có ba góc vuông: góc B= góc C = góc BOC= 90 độ �^=�^=���^=90∘

Nên ���� là hình chữ nhật.

Mà  nằm trên tia phân giác �� suy ra ��=��.

Khi đó ���� là hình vuông.

 
5 tháng 10 2023

Ta có:

|x - 1| + |x - 7|

= |x - 1| + |7 - x|

≥ |x - 1 + 7 - x| = 6

Vậy |x + 1| + |x - 7| ≥ 6

4 tháng 10 2023

`B=y^2-4y+5`

`=y^2-4y+4+1`

`=(y-2)^2+1`

với `y=12` ta có

`(12-2)^2+1=10^2+1=100+1=101`

 Với y=12, ta có 

12² - 4x12 + 5

= 144 - 48 + 5

= 96 + 5=101

4 tháng 10 2023

Góc DAC là góc nằm trong tam giác ABD, nên ta có thể tính được bằng cách lấy tổng các góc trong tam giác ABD trừ đi góc ADB: Góc DAC = 180° - góc ABD = 180° - 60° = 120°

Góc ADB là góc nằm trong tam giác CBD, nên ta có thể tính được bằng cách lấy tổng các góc trong tam giác CBD trừ đi góc CDB:

Góc ADB = 180° - góc CBD = 180° - 20° = 160°

Vậy số đo các góc DAC và ADB lần lượt là 120° và 160°.

4 tháng 10 2023

 Nếu m hoặc n chia hết cho 3 thì hiển nhiên \(nm\left(m^2-n^2\right)⋮3\)

 Nếu cả m và n đều không chia hết cho 3 thì \(m^2,n^2\) đều chia 3 dư 1 (tính chất của số chính phương). Do đó \(m^2-n^2⋮3\) nên \(mn\left(m^2-n^2\right)⋮3\)

 Vậy \(mn\left(m^2-n^2\right)⋮3\) với mọi cặp số nguyên m, n.