K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 10 2024

\(11460+89=11549\)

\(11549+91=11640\)

\(11640+93=11733\)

\(11733+95=11828\)

\(11828+97=11925\)

\(11925+99=12024\)

Vậy số cần điền là `11828`

NV
23 tháng 10 2024

1/2 của 1/3 của 1/4 của 81 768 là:

\(\dfrac{1}{2}\times\dfrac{1}{3}\times\dfrac{1}{4}\times81768=3407\)

NV
23 tháng 10 2024

Ta có:

\(36=36\times1=18\times2=12\times3=9\times4=6\times6\)

Vậy chu vi hình chữ nhật có thể có 5 giá trị khác nhau

21 tháng 10 2024

2\(x+1\) ⋮ \(x-1\)

2(\(x-1\)) + 3 ⋮ \(x-1\)

                 3 ⋮ \(x-1\)

\(x-1\) \(\in\) Ư(3) = {-3; -1; 1; 3}

Lập bảng ta có:

\(x-1\) -3 -1 1 3
\(x\) -2 0 2 4

Theo bảng trên ta có: \(x\in\) {-2; 0; 2; 4}

Vậy \(x\in\left\{-2;0;2;4\right\}\)

20 tháng 10 2024

Nhanh các bạn ơi

1 tháng 7 2024

Tam giác ABC vuông tại A ta có:

\(tanB=\dfrac{AC}{AB}=>\dfrac{5}{12}=\dfrac{AC}{6}=>AC=\dfrac{5\cdot6}{12}=\dfrac{5}{2}\left(cm\right)\)

Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\\ =>BC=\sqrt{AB^2+AC^2}\\ =>BC=\sqrt{6^2+\left(\dfrac{5}{2}\right)^2}=\dfrac{13}{2}\left(cm\right)\)

1 tháng 7 2024

Để giải bài toán, ta cần sử dụng một số công thức và định lý trong hình học, đặc biệt là định lý Pythagore và định nghĩa của các hàm số lượng giác.

Cho tam giác ABC vuông tại A, với AB = 6 cm và tanα = 5/12. Góc B = α.

a) Tính độ dài cạnh AC

Vì tam giác vuông tại A, góc α là góc B, ta có:

tan⁡(α)=đoˆˊi diệnkeˆˋ\tan(\alpha) = \frac{\text{đối diện}}{\text{kề}}tan(α)=keˆˋđoˆˊi diện

Trong tam giác ABC vuông tại A:

tan⁡(α)=BCAC\tan(\alpha) = \frac{BC}{AC}tan(α)=ACBC

Theo đề bài, tan⁡(α)=512\tan(\alpha) = \frac{5}{12}tan(α)=125.

Do đó, ta có:

BCAC=512\frac{BC}{AC} = \frac{5}{12}ACBC=125

Từ đó suy ra:

BC=512ACBC = \frac{5}{12} ACBC=125AC

b) Tính độ dài cạnh BC

Ta sử dụng định lý Pythagore cho tam giác ABC vuông tại A:

BC2=AB2+AC2BC^2 = AB^2 + AC^2BC2=AB2+AC2

Đầu tiên, ta cần tính AC.

Biết rằng tan⁡(α)=512\tan(\alpha) = \frac{5}{12}tan(α)=125, do đó ta có:

sin⁡(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2}sin(α)=BC2+AC2BC sin⁡(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2}sin(α)=BC2+AC2BC

Vì tan(α) = 5/12 nên ta đặt BC = 5k và AC = 12k. Vì thế:

BC=5kBC = 5kBC=5k

AC=12kAC = 12kAC=12k

Sử dụng định lý Pythagore:

BC2=AB2+AC2BC^2 = AB^2 + AC^2BC2=AB2+AC2

(5k)2=AB2+(12k)2(5k)^2 = AB^2 + (12k)^2(5k)2=AB2+(12k)2

25k2=62+144k225k^2 = 6^2 + 144k^225k2=62+144k2

25k2=36+144k225k^2 = 36 + 144k^225k2=36+144k2

Từ đó, ta có:

AC=12k5AC = \frac{12k}{5}AC=512k

AC2=AB2+BC2AC^2 = AB^2 + BC^2AC2=AB2+BC2

(12k)2=62+(5k)2(12k)^2 = 6^2 + (5k)^2(12k)2=62+(5k)2

144k2=36+25k2144k^2 = 36 + 25k^2144k2=36+25k2

144k2−25k2=36144k^2 - 25k^2 = 36144k225k2=36

119k2=36119k^2 = 36119k2=36

k2=36119k^2 = \frac{36}{119}k2=11936

k=36119k = \sqrt{\frac{36}{119}}k=11936

k=6119k = \frac{6}{\sqrt{119}}k=1196

BC=5k=5×6119=30119BC = 5k = 5 \times \frac{6}{\sqrt{119}} = \frac{30}{\sqrt{119}}BC=5k=5×1196=11930

AC=12k=12×6119=72119AC = 12k = 12 \times \frac{6}{\sqrt{119}} = \frac{72}{\sqrt{119}}AC=12k=12×1196=11972

Chúng ta có thể tính toán lại bằng cách:

Suy ra: BC=512ACBC = \frac{5}{12} ACBC=125AC AC=12×65=14.4AC = \frac{12 \times 6}{5} = 14.4AC=512×6=14.4 BC=5×1.2=6BC = 5 \times 1.2 = 6BC=5×1.2=6

Suy ra:...

18 tháng 10 2024

a: Vì OO'=13cm<5cm+12cm

nên (O) cắt (O') tại hai điểm phân biệt

b: Xét ΔOAO' có \(OA^2+O'A^2=OO'^2\left(5^2+12^2=13^2\right)\)

nên ΔOAO' vuông tại A

=>AO\(\perp\)AO' tại A

Xét (O) có

AO là bán kính

AO\(\perp\)AO' tại A

Do đó: AO' là tiếp tuyến của (O) tại A

Xét (O') có

O'A là bán kính

AO\(\perp\)AO'

Do đó: AO là tiếp tuyến của (O') tại A

18 tháng 10 2024

a: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

=>BA\(\perp\)AC tại A

Xét (O') có

ΔBAD nội tiếp

BD là đường kính

Do đó: ΔBAD vuông tại A

=>BA\(\perp\)AD tại A

Ta có: BA\(\perp\)AD
BA\(\perp\)AC
mà AC,AD có điểm chung là A

nên C,A,D thẳng hàng

b: Gọi H là giao điểm của AB và O'O

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(1)

Ta có: O'A=O'B

=>O' nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra O'O là đường trung trực của AB

=>O'O\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔOBO' có \(BO^2+BO'^2=O'O^2\left(3^2+4^2=5^2\right)\)

nên ΔOBO' vuông tại B

Xét ΔOBO' vuông tại B có BH là đường cao

nên \(BH\cdot O'O=BO\cdot BO'\)

=>\(BH=3\cdot\dfrac{4}{5}=2,4\left(cm\right)\)

H là trung điểm của AB

=>\(AB=2\cdot2,4=4,8\left(cm\right)\)

O là trung điểm của BC

=>BC=2*BO=2*4=8(cm)

O' là trung điểm của BD

=>BD=2*BO'=2*3=6(cm)

ΔBCD vuông tại B

=>\(S_{BCD}=\dfrac{1}{2}\cdot BC\cdot BD=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)

7 tháng 9 2015

Gọi số bị chia là a; số chia là b

a : b = 4 ( dư 25) => a = 4b + 25 ; 25 < b

mà  a+ b + 25 = 210 

=> (4b + 25) + b + 25 = 210

=> 5b = 160

b = 160 : 5 = 32 => a = 4.32 + 25= 153

Vậy SBC là 153; SC là 32

27 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)