Tìm x , biết :
(4x - 1)2 - (4x + 1) . (x - 2) = 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4x-1\right)^2-\left(4x+1\right)\left(x-2\right)=12\)
\(\Leftrightarrow\left(4x-1\right)\left(4x-1-x+2\right)=12\)
\(\Leftrightarrow\left(4x-1\right)\left(3x+1\right)=12\)
Rồi bạn tự tính tiếp nhớ :3
Học tốt
\(\left(4x-1\right)^2-\left(4x+1\right)\left(x-2\right)=12\)
\(\Leftrightarrow16x^2-8x+1-4x^2+8x-x+2=12\)
\(\Leftrightarrow12x^2-x-9=0\)( vô nghiệm )
Bài làm:
Ta có: \(\left(4x-1\right)^2-\left(4x+1\right)\left(x-2\right)=12\)
\(\Leftrightarrow16x^2-8x+1-4x^2+7x+2-12=0\)
\(\Leftrightarrow12x^2-x-9=0\)
\(\Leftrightarrow12\left(x^2-\frac{1}{12}x+\frac{1}{576}\right)-\frac{433}{48}=0\)
\(\Leftrightarrow\left[2\sqrt{3}\left(x-\frac{1}{24}\right)\right]^2-\left(\frac{\sqrt{433}}{\sqrt{48}}\right)^2=0\)
\(\Leftrightarrow\left[2\sqrt{3}\left(x-\frac{1}{24}\right)-\sqrt{\frac{433}{48}}\right]\left[2\sqrt{3}\left(x-\frac{1}{24}\right)+\sqrt{\frac{433}{48}}\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}2\sqrt{3}\left(x-\frac{1}{24}\right)=\sqrt{\frac{433}{48}}\\2\sqrt{3}\left(x-\frac{1}{24}\right)=-\sqrt{\frac{433}{48}}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{24}=\frac{\sqrt{433}}{24}\\x-\frac{1}{24}=\frac{-\sqrt{433}}{24}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{433}+1}{24}\\x=\frac{1-\sqrt{433}}{24}\end{cases}}\)
Vậy tập nghiệm của PT \(S=\left\{\frac{1-\sqrt{433}}{24};\frac{\sqrt{433}+1}{24}\right\}\)
Câu a) Nhầm đề rồi nhé
a) * Áp dụng đlí pytago: \(AB^2+BC^2=AC^2\) . Do ABCD là hình vuông => \(AB=BC\)
=> \(2BC^2=AC^2\)
=> \(BC\sqrt{2}=AC\)(1)
Xét tam giác ADC vuông tại D có DF là đường trung tuyến ứng với cạnh huyền AC
=> \(DF=\frac{1}{2}AC\)
=> \(2DF=AC\)(2)
TỪ (1) VÀ (2) => \(BC\sqrt{2}=2DF\)
=> \(BC=DF\sqrt{2}\)
P = \(\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}+\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)
P = \(\frac{\sqrt{x}-4x-1+4x}{1-4x}:\left(\frac{1+2x-2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{1-4x}\right)\)
P = \(\frac{\sqrt{x}-1}{1-4x}\cdot\frac{1-4x}{1+2x-4x-2\sqrt{x}-1+4x}\)
P = \(\frac{\sqrt{x}-1}{2x-2\sqrt{x}}\)
P = \(\frac{\sqrt{x}-1}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{1}{2\sqrt{x}}\)
a) M = -x2 - 4x + 2 = -x2 - 4x - 4 + 6 = -( x2 + 4x + 4 ) + 6 = -( x + 2 )2 + 6
\(-\left(x+2\right)^2\le0\forall x\Rightarrow-\left(x+2\right)^2+6\le6\)
Dấu " = " xảy ra <=> x + 2 = 0 => x = -2
Vậy MMax = 6 , đạt được khi x = -2
b) N = -2y2 - 3y + 5 = -2( y2 + 3/2y + 9/16 ) + 49/8 = -2( y + 3/4 )2 + 49/8
\(-2\left(y+\frac{3}{4}\right)^2\le0\forall y\Rightarrow-2\left(y+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
Dấu " = " xảy ra <=> y + 3/4 = 0 => y = -3/4
Vậy NMax = 49/8 , đạt được khi y = -3/4
c) P = ( 2 -x )( x + 4 ) = -x2 - 2x + 8 = -x2 - 2x - 1 + 9 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9
\(-\left(x+1\right)^2\le0\forall x\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu " = " xảy ra <=> x + 1 = 0 => x = -1
Vậy PMax = 9 , đạt được khi x = -1
( 2m - 3 )( 3n - 2 ) - ( 3m - 2 )( 2n - 3 )
= 6mn - 4m - 9n + 6 - ( 6mn - 9m - 4n + 6 )
= 6mn - 4m - 9n + 6 - 6mn + 9m + 4n - 6
= 5m - 5n
= 5( m - n ) \(⋮\)5 với mọi m, n thuộc Z ( đpcm )
pt <=> \(16x^2-8x+1-\left(4x^2-7x-2\right)=12\)
<=> \(12x^2-x+3=12\)
<=> \(12x^2-x-9=0\)
=> Bạn bấm máy tính tìm nốt x nha
( 4x - 1 )2 - ( 4x + 1 )( x - 2 ) = 12
<=> 16x2 - 8x + 1 - ( 4x2 - 7x - 2 ) = 12
<=> 16x2 - 8x + 1 - 4x2 + 7x + 2 = 12
<=> 12x2 - x + 3 = 12
<=> 12x2 - x + 3 - 12 = 0
<=> 12x2 - x - 9 = 0
\(\Delta=b^2-4ac=\left(-1\right)^2-4\cdot12\cdot\left(-9\right)=1+432=433\)( lại không muốn xài Delta đâu nhưng bí quá ;-; )
\(\Delta>0\)nên phương trình đã cho có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{1+\sqrt{433}}{2\cdot12}=\frac{1+\sqrt{433}}{24}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{1-\sqrt{433}}{2\cdot12}=\frac{1-\sqrt{433}}{24}\end{cases}}\)