Trong một hình thang câm có 2 đường tròn tiếp xúc ngoài nhau và mỗi đường tròn tiếp xúc với 2 cạnh bên và tiếp xúc với 1 đáy của hình thang. Biết bán kính của các đường tròn là 2cm và 8cm. Tính diện tích hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có lẽ x,y nguyên:v
\(x^2+2xy=24y^2+20\)
\(\Leftrightarrow\left(x+y\right)^2=25y^2+20\)
\(\Leftrightarrow\left(x+y\right)^2-25y^2=20\)
\(\Leftrightarrow\left(x-4y\right)\left(x+6y\right)=20\)
Đến đây bạn làm nốt
\(5x^2-17x-18=0\)
\(\Leftrightarrow5x^2-30x+3x-18=0\)
\(\Leftrightarrow5x\left(x-6\right)+3\left(x-6\right)=0\)
\(\Leftrightarrow\left(5x+3\right)\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x+3=0\\x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=-3\\x=6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-3}{5}\\x=6\end{cases}}}\)
Vậy \(x=\frac{-3}{5};x=6\)
<3
Cần CM: \(\frac{a}{\left(1-a\right)^3}\ge\frac{135}{16}a-\frac{27}{16}\)\(\left(0< a< 1\right)\)
thaajt vậy, bđt \(\Leftrightarrow\)\(\left(a-\frac{1}{3}\right)^2\left(15a^2-38a+27\right)\ge0\) đúng
\(\Sigma\frac{a}{\left(b+c\right)^3}=\Sigma\frac{a}{\left(1-a\right)^3}\ge\frac{135}{16}\left(a+b+c\right)-\frac{81}{16}=\frac{27}{8}\)
dấu "=" xảy ra khi a=b=c=1
Áp dụng liên tiếp AM - GM và Cauchy - Schwarz ta có :
\(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}\ge\frac{a^2+ab+1}{\sqrt{a^2+ab+c^2+\left(a^2+b^2\right)}}\)
\(=\frac{a^2+ab+1}{\sqrt{a^2+ab+1}}\)
\(=\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}\)
\(=\frac{1}{\sqrt{5}}\sqrt{\left(\frac{9}{4}+\frac{3}{4}+1+1\right)\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+a^2+c^2\right]}\)
\(\ge\frac{1}{\sqrt{5}}\left[\frac{3}{2}\left(a+\frac{b}{2}\right)+\frac{3}{4}b+a+c\right]\)
\(=\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)
Chứng minh tương tự và công lại ta có đpcm
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
\(\sqrt{3a}.\sqrt{27a}=\sqrt{3a}.3\sqrt{3a}=3\sqrt{9a^2}=3.3.a=9a\) ( vì \(a\ge0\) )
Ta có : \(K=\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}=\frac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{4+2\sqrt{3}}}\)
\(=\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}=\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{3+\sqrt{3}}\)
\(=\frac{\sqrt{2}\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}=\frac{3\sqrt{2}+\sqrt{6}}{6}\)