K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

Xét tứ giác ABCD có :

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)

=> \(132^0+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)

=> \(\widehat{B}+\widehat{C}+\widehat{D}=228^0\)

Ta có : \(\widehat{B}=\widehat{C}-72^0\)

=> \(\widehat{C}-72^0+\widehat{C}+\widehat{D}=228^0\)

=> \(2\widehat{C}-72^0+\widehat{D}=228^0\)

Mà \(\widehat{D}=2\widehat{C}\)

=> \(2\widehat{C}-72^0+2\widehat{C}=228^0\)

=> \(4\widehat{C}=300^0\)

=> \(\widehat{C}=75^0\)(*)

Thay (*) vào \(\widehat{D}=2\widehat{C}=2\cdot75^0=150^0\)

Lại có : \(\widehat{B}+\widehat{C}+\widehat{D}=228^0\)

=> \(\widehat{B}+75^0+150^0=228^0\)

=> \(\widehat{B}=3^0\)

P/S : Góc B nhỏ thế ?

4 tháng 9 2020

Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé

a, Vì MN//AB=>MN//AB//CD(vì AB//CD)

         PQ//DC=>PQ//DC//AB(vì AB//CD)

=>MN//PQ

Xét hình thang ABQP có:      AM=PM(M là trung điểm của AB)

                                              MN//PQ//AB

=>BN=NQ hay N là trung điểm của BQ(1)

Xét hình thang MNCD có:     MP=DP(P là trung điểm của MD)

                                              MN//PQ//CD

=>NQ=QC hay Q là trung điểm của NC(2)

Từ (1) và (2)=>BN=NQ=QC

b,Xét hình thang ABQP có:    AM=PM(M là trung điểm của AP)

                                               BN=QN(N là trung điểm của BQ)

=>MN là đường trung bình của hình thang ABQP

=>MN=\(\frac{AB+PQ}{2}\)

=>AB+PQ=2MN

c, Xét hình thang MNCD có:    MP=DP(P là trung điểm của MD)

                                                 NQ=CQ(Q là trung điểm của NC)

=>PQ là đường trung bình của hình thang MNCD

=>PQ=\(\frac{MN+CD}{2}\)

=>MN+CD=2PQ

d, Vì AB+PQ=2MN =>AB=2MN-PQ(3)

        MN+DC=2PQ =>DC=-MN+2PQ(4)

Cộng từng vế tương ứng của (3) và (4) ta được:

AB+CD=2MN-PQ+(-MN)+2PQ

AB+CD=MN+PQ

27 tháng 8 2020

Mình không biết vẽ hình trên đây nên bạn thông cảm nhé

a,Xét tam giác GBC có:   GI=BI(I là trung điểm của GB)

                                        GK=CK(K là trung điểm của GC)

=>IK là đường trung bình của tam giác GBC

b, Vì IK là đường trung bình của tam giác GBC

=> \(\hept{\begin{cases}IK=\frac{1}{2}BC\\IKsongsongBC\end{cases}}\)(1)

Vì BD là đường trung tuyến kẻ từ B của tam giác ABC =>AD=CD

Vì CE là đường trung tuyến kẻ từ C của tam giác ABC =>AE=BE

Xét tam giác ABC có:     AD=CD

                                       AE=BE

=>DE là đường trung bình của tam giác ABC

=>\(\hept{\begin{cases}DE=\frac{1}{2}BC\\DEsongsongBC\end{cases}}\)(2)

Từ (1) và (2)=>\(\hept{\begin{cases}IK=ED\\IKsongsongED\end{cases}}\)

17 tháng 8 2020

a) Ta có : \(37^{n+1}-37^n=37^n.\left(37-1\right)=37^n.36⋮6^2\)

b) \(79^{n+5}+79^{n+4}\)

\(=79^{n+4}.\left(79+1\right)=79^{n+4}.80⋮20\)

b) \(13^{n+2}-13^{n+1}+13^n=13^n\left(13^2-13+1\right)=13^n.157⋮157\)

d) \(n^3-n=n.\left(n-1\right)\left(n+1\right)⋮6\)

e) \(n^3-4n=n.\left(n^2-4\right)=n\left(n-2\right)\left(n+2\right)\)

Vì \(n=2k+2\) ( Chẵn ) nên :

\(n\left(n-2\right)\left(n+2\right)=\left(2k+2\right)\left(2k+2-2\right)\left(2k+2+2\right)=8\left(k+1\right)k\left(k+2\right)⋮48\)

17 tháng 8 2020

a) 37n+1 - 37n = 37n( 37 - 1 ) = 37n.36 \(⋮\)62

b) 79n+5 + 79n+4 = 79n+4( 79 + 1 ) = 79n+4.80 \(⋮\)20

c) 13n+2 - 13n+1 + 13n = 13n( 132 - 13 + 1 ) = 13n.157 \(⋮\)157

d) n3 - n = n( n2 - 1 ) = n( n - 1 )( n + 1 ) \(⋮\)6

e) n3 - 4n = n( n2 - 4 ) = n( n - 2 )( n + 2 ) (*)

Vì n là số chẵn nên ta có thể đặt n = 2k 

=> (*) = 2k( 2k - 2 )( 2k + 2 ) = ( 4k2 - 4k )( 2k + 2 ) = 8k3 - 8k = 8k( k2 - 1 ) = 8k( k - 1)( k + 1 ) 

Theo ý d) => k( k - 1)( k + 1 ) \(⋮\)6

=> 8k( k - 1)( k + 1 ) chia hết cho 48 hay n3 - 4n chia hết cho 48 ( với n chẵn )

17 tháng 8 2020

9(a + b)2 - (a + b) = (a + b)[9(a + b) - 1]

(mx + my) + (3x + 3y) = m(x + y) + 3(x + y) = (m + 3)(x + y)

(12xy) - 6x - (2y - 1) = 6x(2y - 1) - (2y - 1) = (6x - 1)(2y - 1)

(7xy2 - 5x2y) + (5x - 7y) = xy(7y - 5x) + (5x - 7y) = -xy(5x - 7y) + (5x - 7y) = (-xy + 1)(5x - 7y)

2x(x - y) - (4x - 4y) = 2x(x - y) - 4(x - y) = (2x - 4)(x - y)

17 tháng 8 2020

a) 9( a + b )2 - ( a + b ) = ( a + b )[ 9( a + b ) - 1 ]

b) ( mx + my ) + ( 3x + 3y ) = m( x + y ) + 3( x + y ) = ( m + 3 )( x + y )

c) 12xy - 6x - ( 2y - 1 ) = 6x( 2y - 1 ) - ( 2y - 1 ) = ( 6x - 1 )( 2y - 1 )

d) ( 7xy2 - 5x2y ) + ( 5x - 7y ) = xy( 7y - 5x ) + ( 5x - 7y ) = -xy( 5x - 7y ) + ( 5x - 7y ) = ( -xy + 1 )( 5x - 7y )

e) 2x( x - y ) - ( 4x - 4y ) = 2x( x - y ) - 4( x - y ) = ( 2x - 4 )( x - y )

17 tháng 8 2020

a) 15x + 15y = 15(x + y)

b) 6x - 10y = 2(3x - 5y)

c) 2a + 4b - 6c = 2(a + 2b - 3c)

d) 6xy - 12x - 18y = 6(xy - 2x - 3y)

e) 2(x + y) - 5a(x + y) = (2 - 5a)(x + y)

f) 6x(x - y) + 5(y - x) = 6x(x - y) + (-5)(x - y) = (6x - 5)(x - y)

17 tháng 8 2020

a) \(15x+15y=15\left(x+y\right)\)

b) \(6x-10y=2\left(3x-5y\right)\)

c) \(2a+4b-6c=2\left(a+2b-3c\right)\)

d) \(6xy-12x-18y=6\left(xy-2x-3y\right)\)

e) \(2\left(x+y\right)-5a\left(x+y\right)=\left(2-5a\right)\left(x+y\right)\)

f) \(6x\left(x-y\right)+5\left(y-x\right)=6x\left(x-y\right)-5\left(x-y\right)=\left(6x-5\right)\left(x-y\right)\)

17 tháng 8 2020

1) \(8x^3+12x^2+6x+1=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3\)

\(=\left(2x+1\right)^3=\left(2.-2+1\right)^3=-27\)

2) \(8x^3-12x+6x-1=\left(2x\right)^3-3.\left(2x\right)^2.1+3.2x.1^2-1^3\)

\(=\left(2x-1\right)^3=\left(2.-\frac{1}{2}-1\right)^3=-8\)

3)\(\left(1-2x\right)^2-\left(3x+1\right)^2=\left(1-2x+3x+1\right)\left(1-2x-3x-1\right)\)

\(=\left(x+2\right)\left(-5x\right)=\left(-2+2\right).\left(-5.-2\right)=0\)

4) \(\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=\left(2x-3y\right)\left[\left(2x\right)^2+2x.3y+\left(3y\right)^2\right]\)

\(=\left(2x\right)^3-\left(3y\right)^3=\left(2.-\frac{1}{2}\right)^3-\left(3.-\frac{1}{3}\right)^3=-1-\left(-1\right)=0\)

17 tháng 8 2020

1) Ta có : \(8x^3+12x^2+6x+1\)

\(=\left(2x+1\right)^3=\left(2.-2+1\right)^3=\left(-3\right)^3=-27\)

b) \(8x^3-12x^2+6x-1\)

\(=\left(2x-1\right)^3=\left[2.\left(-\frac{1}{2}\right)-1\right]^3=-8\)

17 tháng 8 2020

3x2 - 6x - 1

= 3( x2 - 2x + 1 ) - 4

= 3( x - 1 )2 - 4

\(3\left(x-1\right)^2\ge0\forall x\Rightarrow3\left(x-1\right)^2-4\ge-4\)

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

Vậy GTNN của biểu thức = -4 khi x = 1

17 tháng 8 2020

\(3x^2-6x-1=3.\left(x^2-2x+1\right)-4=3\left(x-1\right)^2-4\ge-4\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

17 tháng 8 2020

1/ Gọi chiều dài hình chữ nhật đó là x ( cm , x > 5 )

=> Chiều rộng hình chữ nhật đó là x - 5 ( cm )

Theo đề bài ta có : x( x - 5 ) = 300

                       <=> x2 - 5x - 300 = 0

                       <=> x2 + 15x - 20x - 300 = 0

                       <=> x( x + 15 ) - 20( x + 15 ) = 0

                       <=> ( x + 15 )( x - 20 ) = 0

                       <=> x = -15 ( không tmđk ) hoặc x = 20 ( tmđk )

=> Chiều dài hình chữ nhật là 20cm

Chiều rộng hình chữ nhật là 20 - 5 = 15cm

Chu vi hình chữ nhật đó là : 2( 20 + 15 ) = 70cm

2/ Gọi độ dài cạnh góc vuông lớn là x( cm , x > 1 )

=> Độ dài cạnh góc vuông nhỏ là x - 1

Theo định lý Pytago ta có :

x2 + ( x - 1 )2 = 52

<=> x2 + x2 - 2x + 1 = 25

<=> 2x2 - 2x + 1 - 25 = 0

<=> 2x2 - 2x - 24 = 0

<=> 2( x2 - x - 12 ) = 0

<=> x2 - x - 12 = 0

<=> x2 + 3x - 4x - 12 = 0

<=> x( x + 3 ) - 4( x + 3 ) = 0

<=> ( x - 4 )( x + 3 ) = 0

<=> x = 4 ( tmđk ) hoặc x = -3 ( không tmđk )

=> Độ dài cạnh góc vuông lớn là 4cm

=> Độ dài cạnh góc vuông bé là 4 - 1 = 3cm

Chu vi hình tam giác = 3 + 4 + 5 = 12cm

17 tháng 8 2020

1) Gọi chiều dài của hình chữ nhật là \(a\left(a>0,cm\right)\)

Chiều rộng của hình chữ nhật là : \(a-5\left(cm\right)\)

Thoe bài ta có : \(a.\left(a-5\right)=300\Leftrightarrow\left(a-20\right)\left(a+15\right)=0\)

\(\Leftrightarrow a=20\left(a>0\right)\)( Thỏa mãn )

Chiều rộng hình chữ nhật là : \(a-5=15\left(cm\right)\)

Vậy chu vi HCN đó là : \(\left(20+15\right)\cdot2=70\left(cm\right)\)

2) Gọi cạnh góc vuông lớn hơn là \(x\left(x>0,cm\right)\)

Cạnh góc vuông nhỏ hơn là : \(x-1\left(cm\right)\)

Theod dịnh lý Pytago thì : \(x^2+\left(x-1\right)^2=5^2\)

\(\Leftrightarrow2x^2-2x-24=0\)

\(\Leftrightarrow x^2-x-12=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)

\(\Leftrightarrow x=4\left(x>0\right)\) ( Thỏa mãn )

Vậy cạnh góc vuông còn lại là \(x-1=3\left(cm\right)\)

Chu vi tam giác đó là : \(3+4+5=12\left(cm\right)\)

17 tháng 8 2020

| x - 3 | + 3x = 15

TH1 : x < 3

Pt <=> -( x - 3 ) + 3x = 15

    <=> -x + 3 + 3x = 15

    <=> 2x + 3 = 15

    <=> 2x = 12

    <=> x = 6 ( không tmđk )

TH2: x ≥ 3

Pt <=> x - 3 + 3x = 15

     <=> 4x - 3 = 15

     <=> 4x = 18

     <=> x = 18/4 = 9/2 ( tmđk )

Vậy phương trình có nghiệm duy nhất là x = 9/2

17 tháng 8 2020

\(|x-3|+3x=15\)

\(th1\left(x< 3\right):pt\Leftrightarrow-\left(x-3\right)+3x=15\)

\(\Leftrightarrow-x+3+3x=15\)

\(\Leftrightarrow2x=15-3=12\)

\(\Leftrightarrow x=\frac{12}{2}=6\left(ktm\right)\)

\(th2\left(x\ge3\right):pt\Leftrightarrow x-3+3x=15\)

\(\Leftrightarrow4x-3=15\)

\(\Leftrightarrow4x=15+3=18< =>x=\frac{9}{2}\left(tm\right)\)

Vậy ...