Cho tam giác ABC vuông tại A, cạnh BC 5cm và tỉ số hai hình chiếu của AB, AC trên cạnh huyền bằng 9 16. Tính SABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk: \(x\ge0\)
BPT tương đương với: \(\frac{x+12+\sqrt{x^2+24x}}{12}< \frac{27}{8}\frac{x+12-\sqrt{x^2+24x}}{x+12+\sqrt{x^2+24x}}\)
\(\Leftrightarrow\left(x+12+\sqrt{x^2+24x}\right)^2< \frac{81}{2}\left(x+12-\sqrt{x^2+24x}\right)\)
\(\Leftrightarrow\left(x+12+\sqrt{x^2+24x}\right)^3< \frac{81}{2}\left[\left(x+12\right)^2-\left(x^2+24x\right)\right]\)
\(\Leftrightarrow\left(x+12+\sqrt{x^2+24x}\right)^3< \frac{81}{2}.144\)
\(\Leftrightarrow x+12+\sqrt{x^2+24x}< 18\)
\(\Leftrightarrow\sqrt{x^2+24x}< 6-x\)
\(\Leftrightarrow\hept{\begin{cases}x^2+24x< \left(6-x\right)^2\\0\le x\le6\end{cases}}\Leftrightarrow o\le x\le1\)
\(ĐK:x\inℝ\)
\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\Leftrightarrow\left(x^2+4x+7\right)^2=\left[\left(x+4\right)\sqrt{x^2+7}\right]^2\)\(\Leftrightarrow x^4+8x^3+30x^2+56x+49=x^4+8x^3+23x^2+56x+112\)\(\Leftrightarrow7x^2-63=0\Leftrightarrow7\left(x+3\right)\left(x-3\right)=0\Leftrightarrow x=\pm3\left(t/m\right)\)
Vậy phương trình có 2 nghiệm là \(\pm3\)
bài này bạn cần là dùng pp miền giá trị đúng không ?
Hàm số \(y=\frac{x^4}{x^2-1}< =>x^4-yx^2+y=0\)
Để phân thức có GTNN thì \(y^2-4y\ge0< =>y\left(y-4\right)\ge0< =>y\ge4\)
Dấu "=" xảy ra khi \(x^4=4x^2-4< =>x^2-2=0< =>x=\sqrt{2}\)(do x > 1)
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có....
.
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
- Có : OA<OB(4<6)
-> A nằm giữa O và B
-> AB=OB-OA=2cm
- Vì M là trung điểm của HA (GT)
-> MA=HM=HA:2=(6+4):2=5cm
-> MB=MA+AB=5+2=7cm
Vậy : MB=7cm
Hình tự vẽ
Trên đoạn thẳng HA vì điểm O nằm giữa ( Vì OA < OH ( 4 < 6 ) => Điểm O nằm giữa ) ( 1 )
Ta có : OH + OA = HA
Thay số vào ta có : 6 + 4 = HA
=> HA = 10 cm
Vì Điểm M là trung điểm của đoạn thẳng HA => MA= 10 : 2 = 5 cm
Trên tia Ox vì OA < OB ( 4 < 6 ) ( 2 )
=> Điểm A sẽ nằm giữa đoạn thẳng O,B
Vì điểm A sẽ nằm giữa đoạn thẳng O và B
Ta có : OA + AB = OB
AB = OB - OA
Thay số vào ta có : AB = 6 - 4
AB = 2 cm
Từ ( 1 ) và ( 2 ) =>Độ dài đoạn thẳng MB = MA + AB = 5 + 2 = 7 cm
=> MB = 7 cm
\(ĐK:x\ge3\)
\(\sqrt{x}+\sqrt{x-3}=\sqrt{3}\Leftrightarrow\left(\sqrt{x}-\sqrt{3}\right)+\sqrt{x-3}=0\)\(\Leftrightarrow\frac{x-3}{\sqrt{x}+\sqrt{3}}+\sqrt{x-3}=0\Leftrightarrow\sqrt{x-3}\left(\frac{\sqrt{x-3}}{\sqrt{x}+\sqrt{3}}+1\right)=0\)
Dễ thấy \(\frac{\sqrt{x-3}}{\sqrt{x}+\sqrt{3}}+1>0\forall x\ge3\)nên \(\sqrt{x-3}=0\Leftrightarrow x=3\left(t/m\right)\)
Vậy nghiệm duy nhất của phương trình là 3.
Ta có :
\(a+b=c^3-2018\Leftrightarrow a+b+c=\left(c-1\right).c\left(c+1\right)-2016c⋮6\)
Mặt khác :
\(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)=\left(a-1\right).a\left(a+1\right)+\left(b-1\right)b.\left(b+1\right)+\left(c-1\right).c\left(c+1\right)⋮6\)
Do vậy \(a^3+b^3+c^3⋮6\)
Ta khẳng định : Dấu '=' xảy ra tại x=a, y=b, z=c
Khi đó \(4a+3b+4c=22;\frac{1}{3x}=\frac{1}{3a}=\frac{x}{3a^2},\frac{2}{y}=\frac{2}{b}=\frac{2y}{b^2},\frac{3}{z}=\frac{3}{c}=\frac{3z}{c^2}\)và :
\(\frac{1}{3x}+\frac{x}{3a^2}\ge\frac{2}{3a},\frac{2}{y}+\frac{2y}{b^2}\ge\frac{4}{b},\frac{3}{z}+\frac{3z}{c^2}\ge\frac{6}{c}\)
\(\Rightarrow P\ge x+y+z+\left(\frac{2}{3a}-\frac{x}{3a^2}\right)+\left(\frac{4}{b}-\frac{2y}{b^2}\right)+\left(\frac{6}{c}-\frac{3z}{c^2}\right)\)
\(=\left(1-\frac{1}{3a^2}\right)x+\left(1-\frac{2}{b^2}\right)y+\left(1-\frac{3}{c^2}\right)z+\left(\frac{2}{3a}+\frac{4}{b}+\frac{6}{c}\right)\)(*)
Ta chọn a,b,c thích hợp để sử dụng giả thiết \(4x+3y+4z=22\).. Vậy thì các hệ số của x,y,z trong (*) phải thỏa:
\(\hept{\begin{cases}4a+3b+4c=22\\\frac{1-\frac{1}{3a^2}}{4}=\frac{1-\frac{2}{b^2}}{3}=\frac{1-\frac{3}{c^2}}{4}\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}}\)
ta có \(\frac{9}{16}=\frac{HB}{HC}=\frac{HB.BC}{HC.BC}=\frac{AB^2}{AC^2}\)
mà \(AB^2+AC^2=BC^2=25\Rightarrow\hept{\begin{cases}AB^2=9\\AC^2=16\end{cases}\Leftrightarrow\hept{\begin{cases}AB=3\\AC=4\end{cases}}}\)
vậy diện tích ABC là \(\frac{1}{2}AB.AC=6\)