giải pt căn x +1= 3x-7
giúp e với e cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E F I M K
1/
Xét tg vuông ABH có
\(AH^2=AE.AB\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông ACH có
\(AH^2=AF.AC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow AE.AB=AF.AC\) (cùng bằng \(AH^2\) )
2/
\(HE\perp AB\) (gt)
\(AC\perp AB\) (gt) \(\Rightarrow AF\perp AB\)
=> AF//HE (cùng vuông góc với AB) (1)
Ta có
\(HF\perp AC\) (gt)
\(AB\perp AC\) (gt) \(\Rightarrow AE\perp AC\)
=> AE//HF (cùng vuông góc với AC) (2)
Từ (1) và (2) => AEHF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hình bình hành )
=> AE = HF
Xét tg vuông AHC có
\(HF^2=AF.FC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AE^2=AF.FC\)
3/
E; F cùng nhìn AH dưới góc \(90^o\)
=> AEHF là tứ giác nội tiếp
\(\Rightarrow\widehat{BAH}=\widehat{EFH}\) (góc nội tiếp cùng chắn cung EH) (1)
\(\widehat{AEF}=\widehat{EFH}\) (góc so le trong) (2)
\(\widehat{AEF}=\widehat{IEB}\) (góc đối đỉnh) (3)
\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) ) (4)
Xét tg IBE và tg IFC có
Từ (1) (2) (3) (4) \(\Rightarrow\widehat{IEB}=\widehat{ACB}\)
\(\widehat{EIB}\) chung
=> tg IBE đồng dạng với tg IFC (g.g.g)
\(\Rightarrow\dfrac{IE}{IC}=\dfrac{IB}{IF}\Rightarrow IE.IF=IB.IC\)
4/
Ta có
\(\widehat{BAK}+\widehat{BAM}=\widehat{MAK}=90^o\)
\(\widehat{CAM}+\widehat{BAM}=\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{BAK}=\widehat{CAM}\)
Mà \(AM=\dfrac{BC}{2}=MB=MC\) (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
=> tg AMC cân tại M \(\Rightarrow\widehat{CAM}=\widehat{ACM}\)
\(\Rightarrow\widehat{ACM}=\widehat{BAK}\)
Xét tg ABK và tg ACK có
\(\widehat{AKC}\) chung
\(\widehat{BAK}=\widehat{ACM}\) (cmt)
=> tg ABK đồng dạng với tg ACK (g.g.g)
\(\Rightarrow\dfrac{KB}{AK}=\dfrac{AK}{KC}\Rightarrow AK^2=KB.KC\)
Xét tg vuông AKM có
\(AK^2=KH.KM\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow KH.KM=KB.KC\)
\(\sqrt[]{5-x^6}+\sqrt[]{3x^4-2}=1\left(1\right)\)
Điều kiện \(\left\{{}\begin{matrix}5-x^6\ge0\\3x^4-2\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^6\le5\\x^4\ge\dfrac{2}{3}\end{matrix}\right.\) \(\) \(\Rightarrow\left\{{}\begin{matrix}-\sqrt[6]{5}\le x\le\sqrt[6]{5}\\\left[{}\begin{matrix}x\le-\sqrt[4]{\dfrac{2}{3}}\\x\ge\sqrt[4]{\dfrac{2}{3}}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-\sqrt[6]{5}\le x\le-\sqrt[4]{\dfrac{2}{3}}\\\sqrt[4]{\dfrac{2}{3}}\le x\le\sqrt[6]{5}\end{matrix}\right.\) \(\left(2\right)\)
\(\Rightarrow\left(1\right)\) thỏa \(\Leftrightarrow\left\{{}\begin{matrix}5-x^6\le1\\3x^4-2\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^6\le4\\x^4\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\sqrt[3]{2}\\0\le x\le1\end{matrix}\right.\) \(\Leftrightarrow0\le x\le1\left(3\right)\)
\(\left(2\right),\left(3\right)\Rightarrow\sqrt[4]{\dfrac{2}{3}}\le x\le1\) \(\Rightarrow\sqrt[4]{\dfrac{2}{3}}< x< 1\)
Dùng phương pháp đánh giá để giải phương trình này em nhé.
\(x\) + \(\sqrt{3+\sqrt{x}}\) = 3 (đk \(x\ge0\))
Với \(x\) = 1 ta có:
\(x\) + \(\sqrt{3+\sqrt{x}}\) = 1+ \(\sqrt{3+\sqrt{1}}\) = 1+ \(\sqrt{4}\) =1 + 2 = 3(thỏamãn)
Với 0\(\le\) \(x\) < 1 ta có:
0 ≤ \(\sqrt{x}\) < 1
⇒ \(\sqrt{3}\) ≤ \(\sqrt{3+\sqrt{x}}\) < \(\sqrt{3+1}\)
⇒ \(\sqrt{3}\) \(\le\) \(\sqrt{3+\sqrt{x}}\) < 2
0 ≤ \(x\) < 1
Cộng vế với vế ta có:
\(\sqrt{3}\) ≤ \(x\) + \(\sqrt{3+\sqrt{x}}\) < 3 (loại)
Với \(x\) > 1 ta có: \(\sqrt{x}\) > 1
⇒ \(\sqrt{3+\sqrt{x}}\) > \(\sqrt{3+1}\) > 2
\(x\) > 1
Cộng vế với vế ta có: \(x\) + \(\sqrt{3+\sqrt{x}}\) > 2 + 1 = 3 (loại)
Vậy \(x\) = 1 là nghiệm duy nhất thỏa mãn phương trình
Kết luận: Phương trình có nghiệm duy nhất là \(x\) = 1
a) \(AH^2=BH.CH=3,6.6,4=23,04\)
\(\Rightarrow AH=4,8\left(cm\right)\)
\(AC^2=AH^2+HC^2=23,04+40,96=64\)
\(\Rightarrow AC=8\left(cm\right)\)
\(AB^2=AH^2+BH^2=23,04+12,96=36\)
\(\Rightarrow AB=6\left(cm\right)\)
\(BC=BH+CH=3,6+6,4=10\left(cm\right)\)
\(tanB=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow B=53^o\)
\(\Rightarrow C=90^o-53^o=37^o\)
b) Xét Δ vuông ABH, có đường cao DH ta có :
\(AH^2=AD.AB\left(1\right)\)
Tương tự Δ vuông ACH :
\(AH^2=AE.AC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AD.AB=AE.AC\)
\(\sqrt{x+1}=3x+7\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow x+1=\left(3x+7\right)^2\)
\(\Leftrightarrow x+1=9x^2+42x+49\)
\(\Leftrightarrow x+1-9x^2-42x-49=0\)
\(\Leftrightarrow-9x^2-41x-48=0\)
Ta có: \(\Delta=\left(-41\right)^2-4\cdot-9\cdot-48=-48< 0\)
Vậy Pt vô nghiệm
\(\sqrt[]{x+1}=3x-7\Leftrightarrow\left\{{}\begin{matrix}3x-7\ge0\\x+1=\left(3x-7\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{7}{3}\\x+1=9x^2-42x+49\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{7}{3}\\9x^2-43x+48=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow\Delta=1849-1728=121\Rightarrow\sqrt[]{\Delta}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{43+11}{2.9}=3\\x_2=\dfrac{43-11}{2.9}=\dfrac{32}{18}=\dfrac{16}{9}\end{matrix}\right.\)
so với điều kiện \(x\ge\dfrac{7}{3}\)
\(\Rightarrow x=3\)