Cho tam giác ABC vuông tại A, ˆACB=30°𝐴𝐶𝐵^=30°, cạnh AB=5cm . Tính AC,BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=2024 nên x-1=2023
\(H=x^{14}-2023x^{13}-2023x^{12}-...-2023x-2023\)
\(=x^{14}-x^{13}\left(x-1\right)-x^{12}\left(x-1\right)-...-x\left(x-1\right)-\left(x-1\right)\)
\(=x^{14}-x^{14}+x^{13}-x^{13}+x^{12}-...-x^2+x-x+1\)
=1
a)
\(\dfrac{x^4+12x^2-5x}{-x}=-\dfrac{x^4}{x}-\dfrac{12x^2}{x}+\dfrac{-5x}{-x}=-x^3-12x+5\)
b)
\(\dfrac{15x^5y^9-10x^3y^5+25x^4y^4}{5x^2y^2}=\dfrac{15x^5y^9}{5x^2y^2}-\dfrac{10x^3y^5}{5x^2y^2}+\dfrac{25x^4y^4}{5x^2y^2}=3x^3y^7-2xy^3+5x^2y^2\)
`a)`
`(x^4 + 12x^2 -5x):(-x)`
`=[x^4 : (-x)] + [12x^2 : (-x)] - [5x:(-x)]`
`=-x^3 - 12x + 5`
`b)`
`(15 x^5 y^9 - 10 x^3 y^5 + 25 x^4 y^4) : 5x^2 y^2`
`=(15 x^5 y^9 : 5 x^2 y^2) - (10 x^3 y^5 : 5x^2 y^2) + (25 x^4 y^4 : 5 x^2 y^2)`
`=3 x^3 y^7 - 2 x y^3 + 5 x^2 y^2`
Xét ΔMNP có
A,D lần lượt là trung điểm của MN,MP
=>AD là đường trung bình của ΔMNP
=>AD//NP và \(AD=\dfrac{NP}{2}\)
Xét ΔHNP có
B,C lần lượt là trung điểm của HN,HP
=>BC là đường trung bình của ΔHNP
=>BC//NP và \(BC=\dfrac{NP}{2}\)
Ta có: AD//NP
BC//NP
Do đó: AD//BC
Ta có: \(AD=\dfrac{NP}{2}\)
\(BC=\dfrac{NP}{2}\)
Do đó: AD=BC
Xét tứ giác ABCD có
AD//BC
AD=BC
Do đó: ABCD là hình bình hành
Lớp 8 lên lớp 9 mình thấy chỉ có 3 môn chính là Toán,Ngữ Văn và Tiếng Anh thôi bạn!
Đối với những bài không có video bạn bấm vào biểu tượng này[]để xem nội dung của bài nhé!
a: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
BA=BD
Do đó: ΔBAI=ΔBDI
=>\(\widehat{ABI}=\widehat{DBI}\)
=>BI là phân giác của góc ABC
b: Ta có: ΔBAD cân tại B
mà BI là đường phân giác
nên BI\(\perp\)AD
c: Ta có: \(\widehat{ABI}+\widehat{AIB}=90^0\)(ΔABI vuông tại A)
\(\widehat{DBK}+\widehat{EBH}=90^0\)(ΔHBE vuông tại H)
mà \(\widehat{ABI}=\widehat{EBH}\)
nên \(\widehat{AIB}=\widehat{BEH}\)
=>\(\widehat{AIE}=\widehat{AEI}\)
=>ΔAEI cân tại A
ΔAEI cân tại A
mà AK là đường cao
nên K là trung điểm của EI
1/
$x^2y=x-y+1$
$\Leftrightarrow y(x^2+1)=x+1$
$\Leftrightarrow y=\frac{x+1}{x^2+1}$
Với $x$ nguyên, để $y$ nguyên thì $x+1\vdots x^2+1(1)$
$\Rightarrow x(x+1)\vdots x^2+1$
$\Rightarrow (x^2+1)+(x-1)\vdots x^2+1$
$\Rightarrow x-1\vdots x^2+1(2)$
Từ $(1); (2)\Rightarrow (x+1)-(x-1)\vdots x^2+1$
$\Rightarrow 2\vdots x^2+1$
$\Rightarrow x^2+1=1$ hoặc $x^2+1=2$ (do $x^2+1\geq 1$ với mọi $x$ nguyên)
$\Rightarrow x=0$ hoặc $x=\pm 1$
$x=0$ thì $y=\frac{0^2+1}{0+1}=1$
$x=1$ thì $y=\frac{1^2+1}{1+1}=1$
$x=-1$ thì $y=0$
2/
$x^2+4xy+3y^2+4x+6y=0$
$\Leftrightarrow (x^2+4xy+4y^2)+4(x+2y)-2y-y^2=0$
$\Leftrightarrow (x+2y)^2+4(x+2y)=y^2+2y$
$\Leftrightarrow (x+2y)^2+4(x+2y)+4=y^2+2y+4$
$\Leftrightarrow (x+2y+2)^2=(y+1)^2+3$
$\Leftrightarrow 3=(x+2y+2)^2-(y+1)^2=(x+2y+2-y-1)(x+2y+2+y+1)$
$\Leftrightarrow 3=(x+y+1)(x+3y+3)$
Do $x,y$ nguyên nên đến đây ta xét các TH sau (đoạn này đơn giản rồi).
TH1: $x+y+1=1, x+3y+3=3$
TH2: $x+y+1=-1, x+3y+3=-3$
TH3: $x+y+1=3, x+3y+3=1$
TH4: $x+y+1=-3, x+3y+3=-1$
Ta có:
x²y + xy² + x + y = 2020
xy(x + y) + (x + y) = 2020
(x + y)(xy + 1) = 2020
(x + y).(11 + 1) = 2020
12(x + y) = 2020
x + y = 2020 : 12
x + y = 505/3
x² + y² = (x + y)² - 2xy
= (505/3)² - 2.11
= 255025/9 - 22
= 254827/9
Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}\)
=>\(\dfrac{5}{BC}=sin30=\dfrac{1}{2}\)
=>BC=10(cm)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)