K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2020

Phân tích 1 tí 

a + b = 11 > 0 

a . b = 30 > 0 

Suy ra a và b đều là số dương 

a + b = 11 

a = 11 - b 

a . b = 30 

( 11 - b ) . b = 30 

-b^2 + 11b - 30 = 0 

\(\orbr{\begin{cases}b=5\\b=6\end{cases}}\)   ( nhận ) 

\(b=5\Rightarrow a=6\left(n\right)\)   

\(b=6\Rightarrow a=5\left(l\right)\left(a>b\right)\)    

Vậy chỉ có a = 6 ; b = 5 thỏa điều kiện 

\(\left(a-b\right)^{2019}\)   

\(=\left(6-5\right)^{2019}\)   

\(=1^{2019}\)   

\(=1\)

 Vì a+b>0 và ab>0 nên a,b dương

Ta có\(a+b=11\Rightarrow\left(a+b\right)^2=11^2\Leftrightarrow a^2+2ab+b^2=121\)

\(\Rightarrow a^2+2ab+b^2-4ab=121-4ab\Leftrightarrow\left(a-b\right)^2=1\Rightarrow a-b=1\)(Do ab=1 và a,b dương và a>b)

\(\Rightarrow P=1^{2019}=1\)

           Vậy P=1

24 tháng 10 2020

Theo bất đẳng thức 3 biến đối xứng thì ta có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Dấu "=" xảy ra khi: x = y = z

Mà ta thấy: \(\frac{\left(x+y+z\right)^2}{3}=x^2+y^2+z^2=12\)

\(\Rightarrow x=y=z=2\)

Vậy x = y = z = 2

24 tháng 10 2020

tớ  chưa học bđt

24 tháng 10 2020

a) Đặt A = u2 + v2 - 2u + 3v + 15

= (u2 - 2u + 1) + (v2 + 3v + 9/4) + 47/4

= (u - 1)2 + (v + 3/2)2 + 47/4 \(\ge\frac{47}{4}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}u-1=0\\v+\frac{3}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}u=1\\v=-\frac{3}{2}\end{cases}}\)

Vậy Min A = 47/4 <=> u = 1 ; y = -3/2

23 tháng 10 2020

dễ mà tự làm đi

23 tháng 10 2020

Dễ thì giải giúp toi cái. Không trả lời được xong vào cmt làm gì .-. Hay nhở

23 tháng 10 2020

Ta có : 

\(B=6b-b^2-10\)

\(\Leftrightarrow B=-b^2+6b-9-1\)

\(\Leftrightarrow B=-\left(b^2-6b+9\right)-1\)

\(\Leftrightarrow B=-\left(b-3\right)^2-1< 0\)( luôn đúng với mọi b )

Vậy ..........