K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5:

a: Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

=>\(\widehat{ACB}+57^0+72^0=180^0\)

=>\(\widehat{ACB}=51^0\)

Xét ΔABC có \(\widehat{ACB}< \widehat{BAC}< \widehat{ABC}\)

mà AB,BC,AC lần lượt là cạnh đối diện của các góc ACB,BAC,ABC

nên AB<BC<AC

b: Xét ΔBIM và ΔCEM có

MB=MC

\(\widehat{BMI}=\widehat{CME}\)(hai góc đối đỉnh)

MI=ME

Do đó: ΔBIM=ΔCEM

=>\(\widehat{BIM}=\widehat{CEM}\)

=>BI//CE

c: Xét ΔMAK có

MH là đường cao

MH là đường trung tuyến

Do đó: ΔMAK cân tại M

Bài 6:

Số tiền của hóa đơn sau khi giảm giá lần 1 là:

\(16,245:\left(1-5\%\right)=17,1\left(triệuđồng\right)\)

Số tiền đúng của hóa đơn ban đầu là:

17,1:(1-10%)=19(triệu đồng)

Giá niêm yết của cái tivi là:

19-7=12(triệu đồng)

a: Xét ΔBHA và ΔBHD có

BH chung

HA=HD

BA=BD

Do đó: ΔBHA=ΔBHD

b: ΔBHA=ΔBHD

=>\(\widehat{ABH}=\widehat{DBH}\)

Xét ΔBAE và ΔBDE có

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔBAE=ΔBDE
=>EA=ED
=>ΔEAD cân tại E

c: Xét ΔADF có HE//DF

nên \(\dfrac{HE}{DF}=\dfrac{AH}{AD}=\dfrac{1}{2}\)

Xét ΔKDF và ΔKEH có

\(\widehat{KDF}=\widehat{KEH}\)(DF//EH)

\(\widehat{DKF}=\widehat{EKH}\)(hai góc đối đỉnh)

Do đó: ΔKDF~ΔKEH

=>\(\dfrac{KD}{KE}=\dfrac{DF}{EH}=2\)

=>KD=2KE

21 tháng 4 2024

loading...  

b) Do ∆ABD = ∆AID (cmt)

⇒ DB = ID (hai cạnh tương ứng)

∆ICD vuông tại I

⇒ DC là cạnh huyền nên là cạnh lớn nhất

⇒ ID < DC

Mà DB = ID (cmt)

⇒ DB < DC

21 tháng 4 2024

loading...  

a) Xét hai tam giác vuông: ∆ABI và ∆EBI có:

BI là cạnh chung

BA = BE (gt)

⇒ ∆ABI = ∆EBI (cạnh huyền - cạnh góc vuông)

b) Do ∆ABI = ∆EBI (cmt)

⇒ AI = EI (hai cạnh tương ứng)

Xét hai tam giác vuông: ∆IAM và ∆IEC có:

AI = EI (cmt)

∠AIM = ∠EIC (đối đỉnh)

⇒ ∆IAM = ∆IEC (cạnh góc vuông - góc nhọn kề)

⇒ AM = EC (hai cạnh tương ứng)

c) ∆ABC vuông tại A (gt)

⇒ CA ⊥ AB

⇒ CA ⊥ BM

⇒ CA là đường cao của ∆BCM

Do IE ⊥ BC (gt)

⇒ ME ⊥ BC

⇒ ME là đường cao thứ hai của ∆BCM

Mà ME và CA cắt nhau tại I

⇒ I là trực tâm của ∆BCM

⇒ BI ⊥ CM

Ta có:

BE = BA (gt)

CE = AM (cmt)

⇒ BE + CE = BA + AM

⇒ BC = BM

⇒ ∆BCM cân tại B

Mà D là trung điểm của MC (gt)

⇒ BD là đường trung tuyến của ∆BCM

⇒ BD cũng là đường cao của ∆BCM

⇒ BD ⊥ CM

Mà BI ⊥ CM (cmt)

⇒ B, I, D thẳng hàng

21 tháng 4 2024

a) Ta có:

  • ∠BAE = ∠BEA (vì BE = BA)
  • ∠BAE + ∠BEA = 90° (vì AE vuông góc với BC) => ∠BAE = ∠BEA = 45°

Vậy ∆BAI và ∆BEI là hai tam giác cân có cạnh góc vuông, do đó chúng là hai tam giác đồng dạng. => ∆ABI = ∆EBI (theo tính đồng dạng của hai tam giác).

b) Ta có:

  • ∠BAE = 45° (vì BE = BA và AE vuông góc với BC)
  • ∠BAM = 90° (vì AM vuông góc với BC)

Vậy ∠BAE = ∠BAM. => Tam giác ∆BAE đồng dạng với tam giác ∆BAM (theo góc bên trong tương đương của tam giác đồng dạng). => AM = EC (theo tính chất của tam giác đồng dạng, tỉ lệ các cạnh tương ứng).

c) Gọi D là trung điểm của MC. Ta có:

  • D là trung điểm của MC => DM = DC.
  • ∠BEC = 90° (vì BE vuông góc với EC) => ∆BED và ∆BDM là hai tam giác vuông cân (vì BE = BA và BD = DM). => ∠BED = ∠BMD = 45° (vì BD cắt BE và DM cắt EC tại góc vuông). => ∠BID = 90° (vì BD vuông góc với BI) => ∠BID = ∠BED + ∠BMD = 45° + 45° = 90°.

Vậy ba điểm B, I, D thẳng hàng.

21 tháng 4 2024

B nha 

Hoctot!

21 tháng 4 2024

Cho đa thức P(x) = 0

=) \(2x-\dfrac{1}{3}=0\)

    \(2x=\dfrac{1}{3}\)

    \(x=\dfrac{1}{3}:2\)

    \(x=6\)

Đáp án : B

21 tháng 4 2024

câu d (x-y)2 nha mn

Chọn C

a: Xét ΔMAB và ΔMCD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD

Do đó: ΔMAB=ΔMCD

b: Xét ΔCBD có

CM,DN là các đường trung tuyến

CM cắt DN tại G

Do đó: G là trọng tâm của ΔCDB

 

a: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}=90^0-60^0=30^0\)

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

Do đó: ΔBAE=ΔBHE

=>\(\widehat{ABE}=\widehat{HBẺ}\)

=>BE là phân giác của góc ABC

c: Xét ΔBKC có

KH,CA là các đường cao

KH cắt CA tại E

Do đó: E là trực tâm của ΔBKC

=>BE\(\perp\)KC

21 tháng 4 2024

a) Tính góc C: Vì tam giác ABC vuông tại A và góc B = 60 độ, ta có góc C = 90 - 60 = 30 độ.

b) Chứng minh BE là tia phân giác của góc B: Gọi I là trung điểm của AB, vậy BI là đoạn thẳng phân giác của góc B. Ta có HB = AB và BI là đoạn thẳng phân giác của góc B, do đó tam giác BHI là tam giác đều. Do đó, góc BHI = 60 độ. Mà góc HBE là góc ngoài của tam giác BHI, vậy góc HBE = 60 độ. Vậy, BE là tia phân giác của góc B.

c) Chứng minh rằng BE vuông góc với KC: Ta có:

  • Tam giác ABC vuông tại A.
  • Tam giác BHI đều. Vậy ta có:
  • AH là đường cao của tam giác ABC, vì vậy HK là đường cao của tam giác BHI.
  • BK là cạnh của tam giác BHI. Vậy tam giác BKH là tam giác vuông tại K.

Vậy góc HKB = 90 độ.

Nhưng ta đã chứng minh BE là tia phân giác của góc B, vậy góc HBE = góc EBK.

Vậy ta có: góc EBK + góc HKB = góc HBE + góc HKB = 60 + 90 = 150 độ.

Nhưng tổng các góc trong tam giác BKH là 180 độ, vậy góc EBK + góc HKB = 180 độ.

Từ đó suy ra góc EBK = 30 độ.

ΔAED vuông tại E

=>AE<AD

ΔCFD vuông tại F

=>CF<CD

AE<AD

CF<CD

Do đó: AE+CF<AD+CD=AC