Cho tam giác ABC có DE//AC , D thuộc AB , E thuộc BC .Lập các tỉ số theo định lí Thales
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(x^2-9x+8=0\)
=>\(x^2-x-8x+8=0\)
=>x(x-1)-8(x-1)=0
=>(x-1)(x-8)=0
=>\(\left[{}\begin{matrix}x-1=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

a: 2(a+b)-a+3b
=2a+2b-a+3b
=a+5b
b: 4(3a-4b)+5(2a+b)
=12a-16b+10a+5b
=12a+10a-16b+5b
=22a-11b

a: ta có; AM+MB=AB
BN+NC=BC
CP+PD=CD
DQ+QA=DA
mà AB=BC=CD=DA và AM=BN=CP=DQ
nên MB=NC=PD=QA
Xét ΔQAM vuông tại A và ΔNCP vuông tại C có
QA=NC
AM=CP
Do đó: ΔQAM=ΔNCP
b: ΔQAM=ΔNCP
=>QM=PN
Xét ΔMBN vuông tại B và ΔPDQ vuông tại D có
MB=PD
BN=DQ
Do đó: ΔMBN=ΔPDQ
=>MN=PQ
Xét ΔMAQ vuông tại A và ΔNBM vuông tại B có
MA=NB
AQ=BM
Do đó: ΔMAQ=ΔNBM
=>MQ=MN
Ta có: ΔMAQ=ΔNBM
=>\(\widehat{AMQ}=\widehat{BNM}\)
=>\(\widehat{AMQ}+\widehat{BMN}=90^0\)
Ta có: \(\widehat{AMQ}+\widehat{QMN}+\widehat{NMB}=180^0\)
=>\(\widehat{QMN}+90^0=180^0\)
=>\(\widehat{QMN}=90^0\)
Xét tứ giác MNPQ có
MN=PQ
MQ=PN
Do đó: MNPQ là hình bình hành
Hình bình hành MNPQ có MN=MQ
nên MNPQ là hình thoi
Hình thoi MNPQ có \(\widehat{QMN}=90^0\)
nên MNPQ là hình vuông

a) \(...\Rightarrow x\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)
b) \(...\Rightarrow x\left(x^3-2x^2+10x-20\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3-2x^2+10x-20=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(x-2\right)\left(x^2+10\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x^2+10=0\left(vô.lý\right)\end{matrix}\right.\Leftrightarrow x=2\)
Vậy \(x\in\left\{0;2\right\}\)
c) \(...\Rightarrow\left[{}\begin{matrix}2x-3=x+5\\2x-3=-x-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
d) \(...\Rightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-4x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a; \(x^3\) - 16\(x\) = 0
\(x\)(\(x^2\) - 16) = 0
\(\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x^2=\left(-4\right)^2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-4\\x=4\end{matrix}\right.\)
Vậy \(x\) \(\in\) {0; -4; 4}

\(x^2\) - 7\(x\) - 8
= (\(x^2\) + \(x\)) - 8\(x\) - 8
= \(x\).(\(x\) + 1) - 8.(\(x\) + 1)
= (\(x+1\)).(\(x-8\))

2:
a: DB=DC
=>D là trung điểm của BC
DM=DN
mà D nằm giữa M và N
nên D là trung điểm của MN
Xét tứ giác BMCN có
D là trung điểm chung của BC và MN
=>BMCN là hình bình hành
b: Ta có: BMCN là hình bình hành
=>BM//CN
mà BM\(\perp\)AC
nên CN\(\perp\)AC
Xét tứ giác BKCN có
BK//CN
BK\(\perp\)KC
Do đó: BKCN là hình thang vuông
c: Để BMCN là hình thoi thì MN\(\perp\)BC
hay MD\(\perp\)BC
Xét ΔABC có
BK,CH là các đường cao
BK cắt CH tại M
Do đó: M là trực tâm của ΔABC
=>AM\(\perp\)BC
ta có: AM\(\perp\)BC
MD\(\perp\)BC
mà AM,MD có điểm chung là M
nên A,M,D thẳng hàng
Xét ΔABC có
AD là đường cao
AD là đường trung tuyến
Do đó: ΔABC cân tại A
=>AB=AC
1: Diện tích đáy là; \(4000\cdot3:30=4000:10=400\left(cm^2\right)\)
Độ dài cạnh đáy là \(\sqrt{400}=20\left(cm\right)\)

Gọi đường thẳng cần tìm là (d): y=ax+b(a<>0)
Thay x=-3 và y=0 vào (d), ta được:
\(a\cdot\left(-3\right)+b=0\)
=>-3a+b=0
=>b=3a
=>(d): y=ax+3a
Thay x=0 và y=2 vào (d), ta được:
\(a\cdot0+3a=2\)
=>3a=2
=>\(a=\dfrac{2}{3}\)
Vậy: (d): \(y=\dfrac{2}{3}x+3\cdot\dfrac{2}{3}=\dfrac{2}{3}x+2\)

Bài 4:
a: Xét tứ giác ADME có \(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
nên ADME là hình chữ nhật
b: Ta có: MD\(\perp\)AB
AC\(\perp\)AB
Do đó: MD//AC
Ta có: ME\(\perp\)AC
AB\(\perp\)AC
Do đó: ME//AB
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó:D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Ta có: EM=AD(ADME là hình chữ nhật)
AD=DB
Do đó; EM=BD
Xét tứ giác BDEM có
BD//EM
BD=EM
Do đó: BDEM là hình bình hành
c: ADME là hình chữ nhật
=>AM=DE
Ta có: ADME là hình chữ nhật
=>AM cắt DE tại trung điểm của mỗi đường
=>O là trung điểm chung của AM và DE
Ta có: \(OA=OM=\dfrac{AM}{2}\)
\(OD=OE=\dfrac{DE}{2}\)
mà AM=DE
nên OA=OM=OD=OE=AM/2=DE/2
ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=\dfrac{BC}{2}\)
=>\(2OE=\dfrac{BC}{2}\)
=>BC=4OE
d: Ta có: ΔHAC vuông tại H
mà HE là đường trung tuyến
nên HE=AE
mà AE=MD(ADME là hình chữ nhật)
nên HE=MD
Ta có: BDEM là hình bình hành
=>DE//MB
=>DE//BC
=>DE//HM
Xét tứ giác HMED có
HM//ED
HE=MD
Do đó: HMED là hình thang cân
e: Xét tứ giác ABCI có
E là trung điểm chung của AC và BI
=>ABCI là hình bình hành
=>AI//BC
Xét tứ giác AMCF có
E là trung điểm chung của AC và MF
=>AMCF là hình bình hành
=>AF//CM
=>AF//BC
ta có: AF//BC
AI//BC
mà AF,AI có điểm chung là A
nên A,F,I thẳng hàng
Bài 6:
\(B=x^4-4x^3-2x^2+12x+9\)
\(=x^4-3x^3-x^3+3x^2-5x^2+15x-3x+9\)
\(=x^3\left(x-3\right)-x^2\left(x-3\right)-5x\left(x-3\right)-3\left(x-3\right)\)
\(=\left(x-3\right)\left(x^3-x^2-5x-3\right)\)
\(=\left(x-3\right)\left(x^3-3x^2+2x^2-6x+x-3\right)\)
\(=\left(x-3\right)\left(x-3\right)\cdot\left(x^2+2x+1\right)\)
\(=\left(x-3\right)^2\cdot\left(x+1\right)^2=\left[\left(x-3\right)\left(x+1\right)\right]^2\)
=>B là bình phương của một số nguyên

a) Sau a phút, lượng nước có trong bể là:
\(x-y\left(l\right)\)
b) Sau b phút, vòi nước chảy vào được số lít nước là: \(bx\left(l\right)\)
Lượng nước trong bể:
\(5+x-y+bx\left(l\right)\)
Các tỉ số theo định lí Thales là:
1; \(\frac{BD}{BA}\) = \(\frac{BE}{AC}\)
2; \(\frac{BD}{DA}\) = \(\frac{BE}{EC}\)
3; \(\frac{DA}{BA}\) = \(\frac{EC}{BC}\)