tính giá trị biểu thức x^2+y^2+2xy+2x-2y+2028
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tứ giác APMN có
\(\widehat{BAC}=90^o\\ \widehat{MNA}=90^O\\ \widehat{MPA}=90^O\)
=> tứ giác APMN là hình chữ nhật
b) ΔABC vuông tại A, có đường trung tuyến AM
=> AM = MC (1)
=> ΔAMC là tam giác cân
Lại có MP là đường cao (\(\widehat{MPA}=90^O\))
=> MP cũng là đường trung tuyến
=> PA = PC
xét tứ giác AMCQ có
PM = PQ (giả thiết)
PA = PC (chứng minh trêN)
=> tứ giác AMCQ là hình bình hành (2)
từ (1) và (2) => hình bình hành AMCQ là hình thoi
a/
Xét tg ABD có
\(\widehat{DAE}=\widehat{BAE}\Rightarrow\dfrac{DE}{EB}=\dfrac{AD}{AB}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy) (1)
Xét tg ADC có
\(\widehat{ADF}=\widehat{CDF}\Rightarrow\dfrac{AF}{FC}=\dfrac{AD}{CD}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy) (2)
Xét hình bình hành ABCD có
\(AB=CD\) (cạnh đối hbh) \(\Rightarrow\dfrac{AD}{AB}=\dfrac{AD}{CD}\) (3)
Từ (1) (2) (3) \(\Rightarrow\dfrac{DE}{EB}=\dfrac{AF}{FC}\)
b/
Ta có
\(\dfrac{DE}{EB}=\dfrac{AF}{FC}\left(cmt\right)\Rightarrow\dfrac{DE}{AF}=\dfrac{EB}{FC}=\dfrac{EB-DE}{FC-AF}\) (T/c dãy tỷ số = nhau)
Ta có
EB=OB+OE; DE=OD-OE
Mà OB=OD (trong hình bình hành 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> EB-DE=OB+OE-OB+OE=2OE
C/m tương tự ta cũng có
FC-AF=2OF
\(\Rightarrow\dfrac{DE}{AF}=\dfrac{EB-DE}{FC-AF}=\dfrac{2OE}{2OF}=\dfrac{OE}{OF}\Rightarrow\dfrac{DE}{OE}=\dfrac{AF}{OF}\)
Xét tg AOD có
\(\dfrac{DE}{OE}=\dfrac{AF}{OF}\left(cmt\right)\) => EF//AD (Talet đảo trong tg)
Mà AD//BC (cạnh đối hbh)
=> EF//BC
a/
Xét tg ADB có
\(\widehat{ADM}=\widehat{BDM}\left(gt\right)\Rightarrow\dfrac{AM}{MB}=\dfrac{AD}{BD}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy) (1)
Xét tg ADC có
\(\widehat{ADN}=\widehat{CDN}\left(gt\right)\Rightarrow\dfrac{AN}{NC}=\dfrac{AD}{CD}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy) (2)
Mà BD = CD (gt) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AD}{CD}\) (3)
Xét tg ABC
Từ (1) (2) (3) => \(\dfrac{AM}{MB}=\dfrac{AN}{NC}\) => MN//BC (Talet đảo trong tg)
b/ Ta có
AB=AC (gt)
BD=CD (gt)
\(\Rightarrow AD\perp BC\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao)
Mà MN//BC
\(\Rightarrow AD\perp MN\)
Ta có
\(\widehat{BAD}=\widehat{CAD}\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường phân giác của góc ở đỉnh tg cân)
Xét tg vuông AMI và tg vuông ANI có
AI chung
\(\widehat{BAD}=\widehat{CAD}\) (cmt)
=> tg AMI = tg ANI (Hai tg cân có 1 cạnh góc vuông và 1 góc nhọn tương ứng bằng nhau) => MI=NI
c/
Xét tg vuông ABD có
\(AB=\sqrt{AD^2+BD^2}\) (Pitago)
Ta có \(BD=CD=\dfrac{BC}{2}=\dfrac{24}{2}=12cm\)
\(\Rightarrow AB=\sqrt{9^2+12^2}=15cm\)
Ta có
\(\dfrac{AM}{BM}=\dfrac{AD}{BD}\left(cmt\right)\Rightarrow\dfrac{AM}{BM}=\dfrac{9}{12}=\dfrac{3}{4}\Rightarrow\dfrac{AM}{AB}=\dfrac{3}{7}\)
Ta có
MN//BC (cmt)
\(\Rightarrow\dfrac{AM}{AB}=\dfrac{MI}{BD}=\dfrac{3}{7}\Rightarrow MI=\dfrac{MN}{2}=\dfrac{3BD}{7}\)
\(\Rightarrow MN=\dfrac{6BD}{7}=\dfrac{6.12}{7}=\dfrac{72}{7}cm\)
a/
Xét tg ABC có
\(\widehat{BAD}=\widehat{CAD}\left(gt\right)\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{12}{20}=\dfrac{3}{5}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy)
\(\Rightarrow\dfrac{BD}{BC}=\dfrac{3}{8}\Rightarrow BD=\dfrac{3BC}{8}=\dfrac{3.28}{8}=10,5cm\)
\(\Rightarrow DC=BC-BD=28-10,5=17,5cm\)
Ta có DE//AB \(\Rightarrow\dfrac{DC}{BC}=\dfrac{DE}{AB}\Rightarrow DE=\dfrac{DC.AB}{BC}=\dfrac{17,5.12}{28}=7,5cm\)
b/
2 tg ABD và tg ABC có chung đường cao từ A->BC nên
\(\dfrac{S_{ABD}}{S_{ABC}}=\dfrac{BD}{BC}=\dfrac{3}{8}\Rightarrow S_{ABD}=\dfrac{3.S_{ABC}}{8}=\dfrac{3S}{8}\)
\(\Rightarrow S_{ACD}=S_{ABC}-S_{ADC}=S-\dfrac{3S}{8}=\dfrac{5S}{8}\)