K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2: 

a: DB=DC

=>D là trung điểm của BC

DM=DN

mà D nằm giữa M và N

nên D là trung điểm của MN

Xét tứ giác BMCN có

D là trung điểm chung của BC và MN

=>BMCN là hình bình hành

b: Ta có: BMCN là hình bình hành

=>BM//CN

mà BM\(\perp\)AC
nên CN\(\perp\)AC

Xét tứ giác BKCN có

BK//CN

BK\(\perp\)KC

Do đó: BKCN là hình thang vuông

c: Để BMCN là hình thoi thì MN\(\perp\)BC

hay MD\(\perp\)BC

Xét ΔABC có

BK,CH là các đường cao

BK cắt CH tại M

Do đó: M là trực tâm của ΔABC

=>AM\(\perp\)BC

ta có: AM\(\perp\)BC

MD\(\perp\)BC

mà AM,MD có điểm chung là M

nên A,M,D thẳng hàng

Xét ΔABC có

AD là đường cao

AD là đường trung tuyến

Do đó: ΔABC cân tại A

=>AB=AC 

1: Diện tích đáy là; \(4000\cdot3:30=4000:10=400\left(cm^2\right)\)

Độ dài cạnh đáy là \(\sqrt{400}=20\left(cm\right)\)

8 tháng 11

S A B C D E F I K M

a/

Trong mp(SAC) Gọi K là giao của EF và AC

\(K\in EF\)

\(K\in AC;AC\in\left(ABC\right)\Rightarrow K\in\left(ABC\right)\)

=> K là giao của EF với (ABC)

b/

Trong mp (SBC), Gọi M là giao của SI với BF

\(M\in SI;SI\in\left(SAI\right)\Rightarrow M\in\left(SAI\right)\)

\(M\in BF;BF\in\left(ABF\right)\Rightarrow M\in\left(ABF\right)\)

\(A\in\left(SAI\right);A\in\left(ABF\right)\)

=> AM là giao tuyến giữa (SAI) và (ABF)

c/

\(I\in\left(SAI\right)\)

\(I\in BC;BC\in\left(BCE\right)\Rightarrow I\in\left(BCE\right)\)

\(E\in SA;SA\in\left(SAI\right)\Rightarrow E\in\left(SAI\right)\)

\(E\in\left(BCE\right)\)

=> IE là giao tuyến giữa (SAI) và (BCE)

8 tháng 11

Giúp tui với

8 tháng 11

Đây là toán nâng cao chuyên đề bội ước, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:

                     Giải:

                16 ⋮ (2n - 4) 

                 16 ⋮ 2(n  -2)

                 8 ⋮ n - 2

                n - 2  \(\in\) Ư(8); 8 = 23; Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}

Lập bảng ta có:

n - 2 - 8 -4 -2 -1 1 2 4 8
n -6 -2 0 1 3 4 6 10
\(\in\) N  loại loại nhận nhận nhận nhận nhận nhận

Theo bảng trên ta có: n \(\in\) {0; 1; 3; 4; 6; 10}

Vậy n \(\in\) {0; 1; 3; 4; 6; 10}

 

 

a: \(2x\left(x-3y\right)-25\left(3y-x\right)\)

\(=2x\left(x-3y\right)+25\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x+25\right)\)

b: \(36x^2-24x+4\)

\(=4\left(9x^2-6x+1\right)\)

\(=4\left[\left(3x\right)^2-2\cdot3x\cdot1+1^2\right]\)

\(=4\left(3x-1\right)^2\)

c: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(3x-1\right)+\left(3x-1\right)^2\)

\(=\left(3x+2+3x-1\right)^2\)

\(=\left(6x+1\right)^2\)

32x+84x=2022

=>\(x\left(32+84\right)=2022\)

=>116x=2022

=>\(x=\dfrac{2022}{116}=\dfrac{1011}{58}\)

32.x+84.x=2022

(32+84).x=2022

116.x=2022

x=2022-116

x=1906

Từ 1/11/2022 đến 1/11/2024 là 2024-2022=2 năm

Số tiền ông Tài nhận về sau 2 năm là:

\(200\cdot\left(1+5,2\%\right)^2=221,3408\)(triệu đồng)

NV
8 tháng 11

\(A=\left(x^3+3x^2y+3xy^2+y^3\right)-3\left(x^2+2xy+y^2\right)+3\left(x+y\right)+2020\)

\(=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)-1+2021\)

\(=\left(x+y-1\right)^3+2021\)

\(=4040^3+2021\)

NV
8 tháng 11

Có 3 giá trị

\(x=-1;0;1\)