Tìm hai số a và b biết :
1/a+b=-12,a,b=20
2/a^2 +b^2=25,a.b=24
3/a-b=10,a.b=24
4/a^2-b^2=9,a.b=20
Mình đang cần gấp ạ,mong các bạn giúp mk.Mình cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đường tròn tâm O có đường kính AB R2 . Gọi M là điểm di động trên đường tròn O . Điểm M khác AB, ; dựng đường tròn tâm M tiếp xúc với AB tại H . Từ A và B kẻ hai tiếp tuyến AC và BD với đường tròn tâm M vừa dựng.
a) Chứng minh BM AM , lần lượt là các tia phân giác của các góc ABD và BAC .
b) Chứng minh ba điểm C M D , , nằm trên tiếp tuyến của đường tròn tâm O tại điểm M .
c) Chứng minh AC BD không đổi, từ đó tính tích AC BD. theo CD .
d) Giả sử ngoài AB, trên nửa đường tròn đường kính AB không chứa M có một điểm N cố định. gọi I là trung điểm của MN , kẻ IP vuông góc với MB . Khi M chuyển động thì P chuyển động trên đường cố định nào.
Cần giải câu d
\(\hept{\begin{cases}x^2+2xy+y^2=4\left(1\right)\\-x^2+xy+2y^2=0\left(2\right)\end{cases}}\)\(< =>\hept{\begin{cases}x^2+2xy+y^2=4\left(3\right)\\x^2+2xy+2y^2=2x^2+xy\left(4\right)\end{cases}}\)
Lấy pt 1 cộng pt 2 có : \(3xy+3y^2=4\)
Lấy pt 4 trừ pt 3 có : \(y^2=2x^2+xy-4< =>4=2x^2+xy-y^2\)
\(< =>2x^2+3xy+3y^2-2xy-4y^2=4\)
\(< =>2x^2-2xy-4y^2=0\)
\(< =>x=y-4y^2\)\(< =>x=y\left(1-4y\right)\)
bài này bạn chỉ cần sd hđt là xong nhé :)) ko cần dài dòng như mình
Hệ đẳng cấp.
B1: Xét với x = 0
ta có hệ mới: \(\hept{\begin{cases}5y^2=6\\-4y^2=1\end{cases}}\)loại
B2: Đặt: y = tx
Ta có hệ: \(\hept{\begin{cases}2x^2-x^2t+5x^2t^2=6\\3x^2+2x^2t-4x^2t^2=1\end{cases}}\)
=> \(\frac{x\left(2-t+5t^2\right)}{x\left(3+2t-4t^2\right)}=\frac{6}{1}\)
=> \(\frac{\left(2-t+5t^2\right)}{\left(3+2t-4t^2\right)}=\frac{6}{1}\)(1)
ĐK: \(-4t^2+2t+3\ne0\) (@@)
(1) <=> \(29t^2-13t-16=0\)
<=> \(\orbr{\begin{cases}t=1\\t=-\frac{16}{29}\end{cases}}\)thỏa mãn ( @@)
+) Với t = 1 ta có: y = x
Ta có phương trình: \(x^2=1\)<=> x = 1 hoặc x = -1
Với x = 1 ta có y = 1
Với x = -1 ta có y = - 1
+) Với t = -16/29 ta có y = -16/29x
phương trình:
\(2x^2+\frac{16}{29}x^2+5.\frac{16^2}{29^2}x^2=6\)
<=> \(x^2=\frac{841}{571}\)
<=> \(x=\pm\sqrt{\frac{841}{571}}\)
Với \(x=\sqrt{\frac{841}{571}}\) ta có: \(y=-\frac{16}{29}.\sqrt{\frac{841}{571}}\)
Với \(x=-\sqrt{\frac{841}{571}}\) ta có \(y=\frac{16}{29}.\sqrt{\frac{841}{571}}\)
Ta có:
\(4a^2+4ab+4b^2+3=\left(2a+b\right)^2+3b^2+3>0;\forall a,b\)
Do đó:
\(\left(a-b\right)\left(4a^2+4ab+4b^2+3\right)=0\)
<=> \(a=b\)
Bạn nên kiểm tra lại đề. Bài trên không phải là phương trình đâu bạn nhé!
Đáp án: a=b
Giải
Ta có :
4a2+4ab+4b2+3=4a2+4ab+b2+3b2+3=(2a+b2)+3b2+3>3,∀a,b
→(a−b)(4a2+4ab+4b2+3)=0
↔a−b=0
↔a=b
Sửa: \(M=\frac{6}{20x^6-\left(8-40y\right)x^2+25y^2-5}\)
Đặt \(N=20x^6-\left(8-40y\right)x^2+25y^2+5\)
\(=20\left[x^6-2x^3\frac{1-5y}{5}+\left(\frac{1-5y}{5}\right)^2\right]+25y^2-20\left(\frac{1-5y}{5}\right)^2=5\)
\(=20\left(x^3-\frac{1-5y}{5}\right)^2+25y^2-\frac{4}{5}+8y-20y^2+5=20\left(x^3-\frac{1-5y}{2}\right)^2+5\left(y+\frac{4}{5}\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}y=\frac{-4}{5}\\x=1\end{cases}\Rightarrow M=\frac{6}{N}\le\frac{6}{1}=6}\)
Vậy Max M=6 đạt được khi x=1; y=-4/5
\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}=2\left(2\right)\\\sqrt{x+3}+\sqrt{y+3}=4\left(1\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\sqrt{x+3}+\sqrt{y+3}=4\)
\(\Leftrightarrow x+3-y-3=4\left(\sqrt{x+3}-\sqrt{y+3}\right)\)
\(\Leftrightarrow x-y=4\left(\sqrt{x+3}+\sqrt{y+3}\right)\left(3\right)\)
\(\left(2\right)\Leftrightarrow x-y=2\left(\sqrt{x}-\sqrt{y}\right)\left(4\right)\)
Từ (3) và (4)
\(2\sqrt{x+3}-2\sqrt{y+3}=\sqrt{x}-\sqrt{y}\)
\(\Leftrightarrow2\left(\sqrt{x+3}+\sqrt{y+3}\right)=\sqrt{x}-\sqrt{y}\)
\(\Leftrightarrow4\left(x+3-2\sqrt{x+3}\sqrt{y+3}+y+3\right)=x-2\sqrt{x}\sqrt{y}+y\)
\(\Leftrightarrow4x-8\sqrt{x+3}\sqrt{y+3}+4y+24=x-2\sqrt{xy}+y\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
1) a + b = - 12 và ab = 20
a; b là nghiệm của phương trình: \(X^2-\left(-12\right)X+20=0\)
hay \(X^2+12X+20=0\)
Giải delta tìm được nghiệm: \(X=-2\) hoặc \(X=-10\)
Vậy hai số ( a; b ) = ( -2; -10) hoặc ( a; b ) = ( -10 ; -2)
Các bài còn lại đưa về tổng và tích rồi làm như câu 1.
a) \(\hept{\begin{cases}a+b=-12\\a.b=20\end{cases}\Leftrightarrow\hept{\begin{cases}a=-b-12\\\left(-b-12\right).b=20\end{cases}}}\)
\(\hept{\begin{cases}a=-b-12\\b^2+12b+20=0\end{cases}\Rightarrow\hept{\begin{cases}b=-2;a=-10\\b=-10;a=-2\end{cases}}}\)
b) \(\hept{\begin{cases}a^2+b^2=25\\ab=24\end{cases}\Leftrightarrow\hept{\begin{cases}a^2+b^2=25\\2ab=48\end{cases}}}\)
=> \(a^2+b^2-2ab=-23\)\(\Leftrightarrow\left(a-b\right)^2=-23\)(vô lý)
=> Hệ vô nghiệm
2 ý còn lại tương tự nha bn ơi