|2x - 1| = |5 - x|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Bạn tự vẽ hình nhé, mình chỉ viết đc lời giải thôi ^^ a/ Muốn chứng minh 3 điểm N,M,Q cùng nằm trên 1 đường tròn tâm O, ta phải chứng minh khoảng cách từ tâm O đến 3 điểm đó (bán kính) đều bằng nhau( tức ON=OM=OQ ) Chứng minh như sau: Gọi G là giao điểm giữa Ox và NM Ox là trung trực đoạn NM (giả thuyết) => 1/ Ox vuông góc NM => G1(góc NGO) = G2(MGO) = 90độ 2/ G là trung điểm NM => NG = GM Xét tam giác NGO và tam giác MGO có : NG=GM(chứng minh trên) } G1=G2(cmt) } GO chung } => 2 tam giác trên bằng nhau(cạnh góc c) => ON=OM(các cạnh tương ứng)(1) Tương tự như trên, chứng minh 2 tam giác MOH(H là giao điểm Oy và MQ, đặt tên tùy ý^^) và QOH bằng nhau để suy ra OM = OQ(2) Từ(1) và (2) => 3 cạnh bằng nhau b/ Có tam giác NGO = tam giác MGO(cmt) => O1(góc NOG) = O2(GOM) (các góc tương ứng) Có tam giác MOH = tam giác QOH (cmt) => O3(MOH) = O4(HOQ) (các góc tương ứng) Có O2 + O3 = xOy => O2 + O3 =60độ Mà O1=O2(cmt) ; O3=O4(cmt) => O1+O4 = 60 độ Có: NOQ = O1 + xOy + O4 = O1 +O2 +O3 +O4 => NOQ = 60 + 60 = 120độ Nhớ ^^


vì /2014-x/ lớn hơn hoặc bằng 0 tương tự với các số còn lại
để A có giá trị nhỏ nhất thì các số này nhỏ nhất mà nhỏ nhất thì x lớn nhất
vậy x=2014
=> A= 0+1+2=3
| 2014 - x | + | 2015 - x | + | 2016 - x |> | 2014 - x + 2015 - x + 2016 - x |
| 2014 - x + 2015 - x + 2016 - x | = | 2014 + 2015 + 2016 - x - x - x |
= | 6045 - 3x |
đề A có giá trị nhỏ nhất thì | 6045 - 3x | phải có giá trị nhỏ nhất
suy ra 6045 = 3x
6045 : 3 =x
2015 = x
thay x vào A
A = | 2014 - 2015 | + | 2015 - 2015 | + | 2016 - 2015 |
A = 1 + 0 + 1
A = 2
vậy min A = 2
khi x = 2015

A B C D E F I
a,
ta có
A + B+ C = \(180^0\)
B + C = \(180^0\)- A
mà BI là phân giác góc B
IBC = \(\frac{1}{2}\)B
CI là phân giác góc C
ICB = \(\frac{1}{2}\)C
suy ra
IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)( \(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)= \(60^0\)
mà IBC + ICB + BIC = \(180^0\)
suy ra BIC = \(180^0\)- ( IBC + ICB )
BIC = \(180^0\)- \(60^0\)
BIC = \(120^0\)
b,
ta có vì I là giao điểm của phân giác góc B và C
suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC
nên IE = ID = IF
c,
ta có EIB + BIC =\(180^0\)
EIB = \(180^0-120^0\)
EIB = \(60^0\)
Mà EIB đối đỉnh góc DIC
suy ra DIC = EIB = \(60^0\)
vì IF là tia phân giác góc BIC
nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)= \(60^0\)
EIF = BIE + BIF = \(60^0+60^0=120^0\)
DIF = DIC + CIF = \(60^0+60^0=120^0\)
xét tam giác EIF và DIF có
EIF = DIF = \(120^0\)
IF là cạnh chung
IE = ID
suy ra tam giác EIF = tam giác DIF ( c-g-c )
suy ra EF = DF
ta có góc BIC đối đỉnh góc EID
nên BIC = EID = \(120^0\)
xét tam giác EIF và EID có
EID = EIF =\(120^0\)
ID = IF
IE cạnh chung
suy ra tam giác DIE = tam giác FIE ( c-g-c )
suy ra ED = EF
mà EF = DF
suy ra ED = EF = DF
suy ra tam giác EDF là tam giác đều
d,
ta có IE = IF = ID
nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF
mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó
suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF
ĐKXĐ: \(\hept{\begin{cases}2x-1\ge0\\5-x\ge0\end{cases}\Rightarrow\frac{1}{2}\le x\le5}\)
Ta có: |2x - 1| = |5 - x| . Chia 2 trường hợp:
+) 2x - 1 = 5 - x => 3x = 6 => x = 2 (nhận)
+) 2x - 1 = x - 5 => x = -4 (loại)
Vậy x = 2