Rút gọn biểu thức: A = \(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\left(\frac{x+2003}{x}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H E F M N
Theo tính chất đường thẳng song song :
\(AK=KI=IH\)( gt )
=> AE = EM = MB
=> AF = FN = NC
Theo bài ra ta có : \(\frac{MN}{BC}=\frac{AM}{MB}=\frac{2MB}{MB}=2\)cm
\(\frac{EF}{BC}=\frac{AE}{EB}=\frac{AE}{2AE}=\frac{1}{2}\)cm
hay \(2EF=BC\)(*)
Ta có : \(S_{ABC}=\frac{1}{2}AH.BC=90\)( gt )
\(\Delta AMN\)có EF là đường trung bình ( AE = EM ; AF = FN )
Suy ra : EF // MN và EF = 1/2 MN
Ta có : \(S_{MNEF}=\frac{\left(EF+MN\right).IK}{2}\)mà \(IK=\frac{1}{3}AH\)
\(=\frac{\left(EF+MN\right).\frac{AH}{3}}{2}=\frac{\left(EF+2EF\right).\frac{AH}{3}}{2}\)
\(=\frac{EF.AH}{2}\)mà \(2EF=BC\)cmt (*)
\(=\frac{\frac{BC}{2}.AH}{2}=\frac{BC.AH}{4}\)
Vậy \(S_{MNEF}=\frac{180}{4}=45\)cm2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x+\left(x-2\right)\left(2x-1\right)=2\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)=2-x\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)+\left(x-2\right)=0\)
\(\Leftrightarrow2x\left(x-2\right)=0\Leftrightarrow x=0;2\)
Vậy tập nghiệm phương trình là S = { 0 ; 2 }
x + ( x - 2 )( 2x + 1 ) = 2
<=> x + 2x2 - 3x - 2 - 2 = 0
<=> 2x2 - 2x - 4 = 0
<=> x2 - x - 2 = 0
<=> x2 - 2x + x - 2 = 0
<=> x( x - 2 ) + ( x - 2 ) = 0
<=> ( x - 2 )( x + 1 ) = 0
<=> x = 2 hoặc x = -1
Vậy phương trình có tập nghiệm S = { 2 ; -1 }
![](https://rs.olm.vn/images/avt/0.png?1311)
\(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\)
Ta có: \(3x^2-6xy+3y^2-12z^2\)
\(=3.\left(x^2-2xy+y^2-4z^2\right)\)
\(=3.\left[\left(x-y\right)^2-4z^2\right]\)
\(=3.\left(x-y-2z\right).\left(x-y+2z\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gớm Tú ơi, làm gì mà Dis nhiều thế :)) Nghiếp khiếp vậy mày:))))
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=\left(2\sqrt{3}-5\sqrt{27}+4\sqrt{12}\right):\sqrt{3}\)
\(=2\sqrt{3}:\sqrt{3}-5\sqrt{27}:\sqrt{3}+4\sqrt{12}:\sqrt{3}\)
\(=2\sqrt{3:3}-5\sqrt{27:3}+4\sqrt{12:3}\)
\(=2\sqrt{1}-5\sqrt{9}+4\sqrt{4}=2.1-5.3+4.2=2-15+8=-5\)
\(B=\frac{\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}=\frac{\left(2+\sqrt{3}\right).\left(\sqrt{2-\sqrt{3}}\right)^2}{\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}}\)
\(=\frac{\left(2+\sqrt{3}\right).\left(2-\sqrt{3}\right)}{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}=\frac{4-3}{\sqrt{4-3}}=\frac{1}{\sqrt{1}}=1\)
b) \(ĐKXĐ:x\ge\frac{7}{2}\)
Thay \(A=-5\), \(B=1\)vào biểu thức ta được:
\(1-3\sqrt{2x-7}=-5\)\(\Leftrightarrow3\sqrt{2x-7}=6\)
\(\Leftrightarrow\sqrt{2x-7}=2\)\(\Leftrightarrow2x-7=4\)
\(\Leftrightarrow2x=11\)\(\Leftrightarrow x=\frac{11}{2}\)( thỏa mãn ĐKXĐ )
Vậy \(x=\frac{11}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(2x^2+5x+3=0\)
\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-1\end{cases}}\)
\(2x^2+5x+3=0\)
\(\Leftrightarrow2x^2+2x+3x+3=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)=0\Leftrightarrow x=-\frac{3}{2}orx=-1\)
Vậy nghiệm của phương trình là x = -3/2 ; -1
Ta có: \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\left(\frac{x+2003}{x}\right)\) \(\left(ĐK:x\ne\pm1;x\ne0\right)\)
\(\Leftrightarrow A=\left(\frac{\left(x+1\right)^2-\left(x-1\right)^2+\left(x^2-4x-1\right)}{\left(x-1\right).\left(x+1\right)}\right).\left(\frac{x+2003}{x}\right)\)
\(\Leftrightarrow A=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x-1\right).\left(x+1\right)}\right).\left(\frac{x+2003}{x}\right)\)
\(\Leftrightarrow A=\left(\frac{x^2-1}{x^2-1}\right).\left(\frac{x+2003}{x}\right)\)
\(\Leftrightarrow A=\frac{x+2003}{x}\)
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right)\left(\frac{x+2003}{x}\right)\)
\(=\left(\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\left(\frac{x-2003}{x}\right)\)
\(=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\left(\frac{x-2003}{x}\right)\)
\(=\left(\frac{x^2-1}{\left(x-1\right)\left(x+1\right)}\right)\left(\frac{x-2003}{x}\right)=\frac{x-2003}{x}\)