Cho phương trình :
\(\left(x+2\right)\left[mx^2+\left(m+3\right)x-m-3\right]=0\) (2)
Tìm m để phương trình (2) có 2 nghiệm phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đường tròn ngoại tiếp tam giác ABC có tâm K(;3). và bán kính R =AK=
Phân giác AI có phương trình 3x+y-8=0
Gọi D=AI (K) tọa độ điểm D là nghiệm của hệ
Giải rât được hai nghiệm và D()
Lại có ICD cân tại D
DC=DI mà DC=DB B, C là nghiệm của hệ:
Vậy B, C có tọa độ là (1;1), (4;1)
đk : \(x\ge-1\)
Đặt \(\sqrt{x+1}=b\Rightarrow\hept{\begin{cases}x^3+b=1\\b^2=x+1\end{cases}}\) rút \(b=1-x^3\text{ thế xuống phương trình dưới ta có : }\)
\(\left(1-x^3\right)^2=x+1\Leftrightarrow1-2x^3+x^6=x+1\Leftrightarrow x\left(x^5-2x^2-1\right)=0\)
Vậy \(\orbr{\begin{cases}x=0\\x^5-2x^2-1=0\end{cases}}\) mà chú ý \(b=1-x^3\ge0\Rightarrow x\le1\Rightarrow x^5< 2x^2+1\)
nên phương trình \(x^5-2x^2-1=0\text{ không có nghiệm nào thỏa mãn}\)
vậy pt có nghiệm duy nhất x=0
ĐK : x\(\ge\)- 1
\(x^2+\sqrt{x+1}=1\)
<=> \(\sqrt{x+1}=1-x^2\)
<=> \(x+1=1-2x^2+x^4\)
<=> \(x^4-2x^2-x=0\)
<=> \(x\left(x^3-2x-1\right)=0\)
<=> \(x\left(x+1\right)\left(x^2-x-1\right)=0\)
<=> \(\hept{\begin{cases}x=0\\x=-1\\\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)<=> x = 0 ; x = - 1 ; x = \(\frac{1+\sqrt{5}}{2};\frac{1-\sqrt{5}}{2}\)
Vậy...
\(x^2+\sqrt{x+1}=1\)ĐK : x >= -1
\(\Leftrightarrow x^2-1+\sqrt{x+1}=0\Leftrightarrow\left(x-1\right)\left(x+1\right)+\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{x+1}\left[\sqrt{x+1}\left(x-1\right)+1\right]=0\)
TH1 : \(\sqrt{x+1}=0\Leftrightarrow x=-1\)
TH2 : \(\sqrt{x+1}=-\frac{1}{x-1}\Leftrightarrow x+1=\frac{1}{\left(x-1\right)^2}\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+1\right)=1\Leftrightarrow x^3-2x^2+x+x^2-2x+1=1\)
\(\Leftrightarrow x^3-x^2-x=0\Leftrightarrow x\left(x^2-x-1\right)=0\)
\(\Leftrightarrow x=0;x=\frac{1\pm\sqrt{5}}{2}\)
ĐKXĐ: x≥−2x≥−2
2(x2−x+6)=5√x3+82(x2−x+6)=5x3+8
⇔2(x2−x+6)=5√(x+2)(x2−2x+4)⇔2(x2−x+6)=5(x+2)(x2−2x+4)
Đặt {√x+2=a≥0√x2−2x+4=b>0{x+2=a≥0x2−2x+4=b>0
⇒2(a2+b2)=5ab⇒2(a2+b2)=5ab
⇔2a2−5ab+2b2=0⇔2a2−5ab+2b2=0
⇔(a−2b)(2a−b)=0⇔(a−2b)(2a−b)=0
⇒[a=2b2a=b⇒[a=2b2a=b ⇒[√x+2=2√x2−2x+42√x+2=√x2−2x+4⇒[x+2=2x2−2x+42x+2=x2−2x+4
⇒[x+2=4(x2−2x+4)4(x+2)=x2−2x+4⇒[x+2=4(x2−2x+4)4(x+2)=x2−2x+4
⇒...
Đừng cho mình nhé ko phải do mình làm chỉ nhờ trang mạng khác để giúp cậu thôi nhé
( Đ hiểu kiểu gì mà mấy bạn cứ trả lời TH2, thôi thì mình sửa lại vậy =)) )
TH2 : a = 2 - b => a2 = b2 - 4b + 4. Thay vào (**) ta có :
a2 - b2 = 2x <=> - 4b + 4 = 2x
<=> - 2b = x - 2
<=> 4b2 = x2 - 4x + 4
<=> 4 - 4x = x2 - 4x + 4
<=> x2 - 4x + 4 + 4x - 4 = 0
<=> x2 = 0 <=> x = 0 (tmđk)
Vậy pt có tập nghiệm S = { - 3/5 ; 0 }
\(\left(x+2\right)\left[mx^2+\left(m+3\right)x-m-3\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\mx^2+\left(m+3\right)x-m-3=0\left(3\right)\end{cases}}\)
Để \(\left(2\right)\)có hai nghiệm phân biệt thì \(\left(3\right)\)có hai nghiệm phân biệt trong đó \(1\)nghiệm bằng \(-2\)hoặc có nghiệm kép khác \(-2\)hoặc có nghiệm đơn khác \(-2\).
TH 1: có nghiệm đơn khác \(-2\).
Với \(m=0\):
\(3x-3=0\Leftrightarrow m=1\)(thỏa mãn)
TH 2: có nghiệm kép khác \(-2\).
\(m\ne0\):
\(\Delta_{\left(3\right)}=\left(m+3\right)^2+4m\left(m+3\right)=\left(5m+3\right)\left(m+3\right)\)
\(\Delta_{\left(3\right)}=0\Leftrightarrow\orbr{\begin{cases}m=-\frac{3}{5}\\m=-3\end{cases}}\)
Thử lại thấy đều thỏa mãn.
TH 3: \(\left(3\right)\)có hai nghiệm phân biệt trong đó có \(1\)nghiệm là \(-2\).
\(m.\left(-2\right)^2+\left(m+3\right).\left(-2\right)-m-3=0\Leftrightarrow m=9\)
Thử lại thỏa mãn.