K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề thi đánh giá năng lực

26 tháng 6

\(D=ℝ\)

Có \(y'=x^2-2x-m\)

Xét \(y'=0\) 

\(\Leftrightarrow x^2-2x-m=0\)

\(\Leftrightarrow m=x^2-2x\)    (1)

YCBT \(\Leftrightarrow\) (1) có 2 nghiệm phân biệt thuộc \(\left(3;4\right)\)

 Đặt \(f\left(x\right)=x^2-2x\). Khi đó \(f'\left(x\right)=2x-2\)

 \(f'\left(x\right)=0\Leftrightarrow x=1\)

 Lập BBT, ta thấy để \(m=f\left(x\right)\) có 2 nghiệm phân biệt thuộc \(\left(3;4\right)\) thì \(3< m< 8\)

 Khi đó \(m\in\left\{4;5;6;7\right\}\), suy ra có 4 giá trị nguyên của m thỏa mãn ycbt.

 -> Chọn B.

 

 

26 tháng 6

BBT của \(f\left(x\right)\):

 

25 tháng 6

Chọn `D.` Thế năng cực đại tại vị trí vận tốc đổi chiều.

- Vì:

Khi vận tốc của vật đổi chiều thì lúc đó vật đang ở vị trí biên dương (hoặc biên âm) `=>x=+-A`.

  Mà `W_t =1/2 kx^2`

  `=>W_t=1/2 kA^2 =W_[t(max)]`

25 tháng 6

giải thích kĩ hộ mk với nha

#include <bits/stdc++.h>

using namespace std;

int main()

{

int n,A[100],i,kt,j;

cin>>n;

for (int i=1; i<=n; i++)

cin>>A[i];

for (int i=1; i<=n; i++)

if (A[i]>1)

{

kt=0;

for (int j=2; j*j<=A[i]; j++)

if (A[i]%j==0) kt=1;

if (kt==0) cout<<A[i]<<" ";

}

return 0;

}

 

33333333333333333333

25 tháng 6

b) Xét pt hoành độ giao điểm của hàm số đã cho và Ox là \(2x^3+2\left(6m-1\right)x^2-3\left(2m-1\right)x-3\left(1+2m\right)=0\)    (*)

Ta thấy \(x=1\) là nghiệm của pt trên. Lập sơ đồ Horner:

  \(2\) \(2\left(6m-1\right)\) \(-3\left(2m-1\right)\) \(-3\left(1+2m\right)\)
\(x=1\) \(2\) \(12m\) \(6m+3\) \(0\)

Do đó pt (*) 

\(\Leftrightarrow\left(x-1\right)\left(2x^2+12mx+6m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2+12mx+6m+3=0\end{matrix}\right.\)

 Xét pt \(2x^2+12mx+6m+3=0\)      (1)

 Ycbt \(\Leftrightarrow\) pt (1) có 2 nghiệm phân biệt \(x_1,x_2\) khác 1 và thỏa mãn \(x_1^2+x_2^2=27\)

 Có \(\Delta'=\left(6m\right)^2-2\left(6m+3\right)=36m^2-12m-6>0\) 

 \(\Leftrightarrow\left[{}\begin{matrix}m>\dfrac{1+\sqrt{7}}{6}\\m< \dfrac{1-\sqrt{7}}{6}\end{matrix}\right.\)

Có 2 nghiệm khác 1 \(\Leftrightarrow2.1^2+12m.1+6m+3\ne0\) 

\(\Leftrightarrow18m+5\ne0\)

\(\Leftrightarrow m\ne-\dfrac{5}{18}\)

Theo định lý Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-6m\\x_1x_2=\dfrac{6m+3}{2}\end{matrix}\right.\)

Để \(x_1^2+x_2^2=27\) 

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=27\)

\(\Leftrightarrow\left(-6m\right)^2-2.\dfrac{6m+3}{2}=27\)

\(\Leftrightarrow36m^2-6m-3=27\)

\(\Leftrightarrow6m^2-m-5=0\)

\(\Leftrightarrow6m^2-6m+5m-5=0\)

\(\Leftrightarrow6m\left(m-1\right)+5\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left(6m+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\left(nhận\right)\\m=-\dfrac{5}{6}\left(nhận\right)\end{matrix}\right.\)

Vậy \(m=1\) hoặc \(m=-\dfrac{5}{6}\) thỏa ycbt.

25 tháng 6

c) Xét pt \(x^3-3mx^2+\left(3m-1\right)x+6m=0\)   (*)

Ta thấy (*) có nghiệm \(x=-1\). Lập sơ đồ Horner:

  \(1\) \(-3m\) \(3m-1\) \(6m\)
\(x=-1\) \(1\) \(-3m-1\) \(6m\) \(0\)

Vậy (*) \(\Leftrightarrow\left(x+1\right)\left(x^2-\left(3m+1\right)x+6m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2-\left(3m+1\right)x+6m=0\end{matrix}\right.\)

Tới đây thì làm tương tự câu b) nhé.