Bài 48 (trang 29 SGK Toán 9 Tập 1)
Khử mẫu của biểu thức lấy căn
$\sqrt{\dfrac{1}{600}}; \sqrt{\dfrac{11}{540}}$ ; $\sqrt{\dfrac{3}{50}} ; \sqrt{\dfrac{5}{98}}$ ; $\sqrt{\dfrac{(1-\sqrt{3})^{2}}{27}}$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : Vì \(x\ge0\)và \(y\ge0\)nên \(x+y\ge0\)\(\Leftrightarrow\left|x+y\right|=x+y\)
\(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}\)
\(=\frac{2}{x^2-y^2}\sqrt{\frac{3}{2}.\left(x+y\right)^2}\)
\(=\frac{2}{x^2-y^2}.\sqrt{\frac{3}{2}}.\left|x+y\right|\)
\(=\frac{2}{\left(x-y\right)\left(x+y\right)}.\sqrt{\frac{3}{2}}.\left(x+y\right)\)
\(=\frac{2}{x-y}.\sqrt{\frac{3}{2}}\)
\(=\frac{1}{x-y}.2.\sqrt{\frac{3}{2}}\)
\(=\frac{1}{x-y}.\sqrt{\frac{2^2.3}{2}}\)
\(=\frac{1}{x-y}.\sqrt{6}=\frac{\sqrt{6}}{x-y}\)
a, \(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}=\frac{2}{x^2-y^2}\frac{\sqrt{3}\left|x+y\right|}{\sqrt{2}}=\frac{2\sqrt{3}\left(x+y\right)}{\left(x-y\right)\left(x+y\right)\sqrt{2}}\)
do \(x\ge0;y\ge0\)
\(=\frac{2\sqrt{3}}{\sqrt{2}\left(x-y\right)}=\frac{2\sqrt{6}}{2\left(x-y\right)}=\frac{\sqrt{6}}{x-y}\)
Rút gọn các biểu thức sau với x≥0x≥0:
a) 2\(\sqrt{3x}\)-4\(\sqrt{3x}\)+27-3\(\sqrt{3x}\)=27-5\(\sqrt{3x}\)
b)3\(\sqrt{2x}\)-5\(\sqrt{8x}\)+7\(\sqrt{18x}\)+28
=3\(\sqrt{2x}\)-10\(\sqrt{2x}\)+21\(\sqrt{2x}\)+28
=14\(\sqrt{2x}\)+28=14(\(\sqrt{2x}\)+2)
a) \(2\sqrt{3x}-4\sqrt{3x}+27-3\sqrt{3x}\)
\(=\left(2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x}\right)+27\)
\(=-5\sqrt{3x}+27\)
a) 3\(\sqrt{3}\)=\(\sqrt{27}\)>\(\sqrt{12}\)
c) \(\frac{1}{3}\)\(\sqrt{51}\)=\(\sqrt{\frac{51}{9}}\)<\(\frac{1}{5}\)\(\sqrt{150}\)=\(\sqrt{\frac{150}{25}}\)=\(\sqrt{6}\)
b) 3\(\sqrt{5}\)=\(\sqrt{45}\)< 7=\(\sqrt{49}\)
d) \(\frac{1}{2}\sqrt{6}\)=\(\sqrt{\frac{6}{4}}\)=\(\sqrt{\frac{3}{2}}\)< 6\(\sqrt{\frac{1}{2}}\)=\(\sqrt{\frac{36}{2}}\)=\(\sqrt{18}\)
a) Ta có:
Vì nên
Vậy .
b) Ta có:
Vì nên
Vậy .
c) Ta có:
Vì nên
Vậy .
d) Ta có:
Vì nên
Vậy .
Ta có:
+) 3√5=√32.5=√9.5=√45.35=32.5=9.5=45.
+) −5√2=−√52.2=−√25.2=−√50.−52=−52.2=−25.2=−50.
+) Với xy>0xy>0 thì √xyxy có nghĩa nên ta có:
−23√xy=−√(23)2.xy=−√49xy.−23xy=−(23)2.xy=−49xy.
+) Với x>0x>0 thì √2x2x có nghĩa nên ta có:
x√2x=√x2.2x=√x2.2xx2x=x2.2x=x2.2x=√2x.xx=√2x.
a, \(3\sqrt{5}=\sqrt{9.5}=\sqrt{45}\)
b, \(-5\sqrt{2}=-\sqrt{25.2}=-\sqrt{50}\)
c, \(-\frac{2}{3}\sqrt{xy}=-\sqrt{\frac{4}{9}xy}\)
d, \(x\sqrt{\frac{2}{x}}=\sqrt{\frac{2x^2}{x}}=\sqrt{2x}\)
a, \(\sqrt{54}=\sqrt{9.6}=3\sqrt{6}\)
b, \(\sqrt{108}=\sqrt{36.3}=6\sqrt{3}\)
c, \(0,1\sqrt{20000}=0,1\sqrt{2.10000}=10\sqrt{2}\)
d, \(-0,05\sqrt{28800}=-0,05\sqrt{288.100}=-0,05.10.\sqrt{144.2}\)
\(=-0,5.12\sqrt{2}=-6\sqrt{2}\)
e, \(\sqrt{7.63.a^2}=\sqrt{7.7.9.a^2}=21\left|a\right|\)
Nối các điểm ta có tứ giác MNPQMNPQ
Tứ giác MNPQMNPQ có:
- Các cạnh bằng nhau và cùng bằng đường chéo của hình chữ nhật có chiều dài 2cm2cm, chiều rộng 1cm1cm. Do đó theo định lí Py-ta-go, ta có:
MN=NP=PQ=QM=√22+12=√5(cm)MN=NP=PQ=QM=22+12=5(cm).
Hay MNPQMNPQ là hình thoi.
- Các đường chéo bằng nhau và cùng bằng đường chéo của hình chữ nhật có chiều dài 3cm3cm, chiều rộng 1cm1cm nên theo định lý Py-ta-go ta có độ dài đường chéo là:
MP=NQ=√32+12=√10(cm).MP=NQ=32+12=10(cm).
Như vậy hình thoi MNPQMNPQ có hai đường chéo bằng nhau nên MNPQMNPQ là hình vuông.
Vậy diện tích hình vuông MNPQMNPQ bằng MN2=(√5)2=5(cm2)
Ta thấy mỗi cạnh của tứ giác là đường chéo của hình chữ nhật do hai ô vuông ghép lại, nên hình đó có bốn cạnh bằng nhau và bằng căn 1^2 + 2^2 = căn 5 (đvđd) (định lý Pytago)
Tứ giác có bốn cạnh bằng nhau nên tứ giác là hình thoi.
Mỗi đường chéo của tứ giác là đường chéo của hình chữ nhật do ba ô vuông ghép lại, nên giác có hai đường chéo bằng nhau và bằng căn 1^ 2 + 3^2 = căn 10 đvđ d
Hình thoi có hai đường chéo bằng nhau nên tứ giác là hình vuông.
Diện tích hình vuông :
(đvdt)
a) Đúng. Vì √0,0001=√0,012=0,010,0001=0,012=0,01
Vì VP=√0,0001=√0,012=0,01=VTVP=0,0001=0,012=0,01=VT.
b) Sai.
Vì vế phải không có nghĩa do số âm không có căn bậc hai.
c) Đúng.
Vì: 36<39<4936<39<49 ⇔√36<√39<√49⇔36<39<49
⇔√62<√39<√72⇔62<39<72
⇔6<√39<7⇔6<39<7
Hay √39>639>6 và √39<739<7.
d) Đúng.
Xét bất phương trình đề cho:
(4−√13).2x<√3.(4−√13)(4−13).2x<3.(4−13) (1)(1)
Ta có:
16>13⇔√16>√1316>13⇔16>13
⇔√42>√13⇔42>13
⇔4>√13⇔4>13
⇔4−√13>0⇔4−13>0
Chia cả hai vế của bất đẳng thức (1)(1) cho số dương (4−√13)(4−13), ta được:
(4−√13).2x(4−√13)<√3.(4−√13)(4−√13)(4−13).2x(4−13)<3.(4−13)(4−13)
⇔2x<√3.⇔2x<3.
Vậy phép biến đổi tương đương trong câu d là đúng.
a) \(\sqrt{\left(x-3\right)^2}=9\Leftrightarrow\left|x-3\right|=9\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=9\\x-3=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=12\\x=-6\end{cases}}\)
Vậy ...
b) \(\sqrt{4x^2+4x+1}=6\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\Leftrightarrow\orbr{\begin{cases}2x+1=6\\2x+1=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{7}{2}\end{cases}}\)
Vậy ...
\(\sqrt{\dfrac{1}{600}}\)=\(\sqrt{\dfrac{1}{10^2\cdot6}}\)=\(\sqrt{\dfrac{1\cdot6}{10^2\cdot6\cdot6}}\)=\(\dfrac{\sqrt{6}}{60}\)
\(\sqrt{\dfrac{11}{540}}\)=\(\sqrt{\dfrac{11\cdot540}{540\cdot540}}\)=\(\dfrac{\sqrt{5940}}{540}\)=\(\dfrac{\sqrt{165}}{90}\)
\(\sqrt{\dfrac{3}{50}}\)=\(\sqrt{\dfrac{3\cdot50}{50\cdot50}}\)=\(\dfrac{\sqrt{150}}{50}\)=\(\dfrac{\sqrt{6}}{10}\)
\(\sqrt{\dfrac{5}{98}}\)=\(\sqrt{\dfrac{5\cdot98}{98\cdot98}}=\dfrac{\sqrt{490}}{98}=\dfrac{\sqrt{10}}{14}\)
\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)
\(\sqrt{\dfrac{1}{600}}=\dfrac{\sqrt{6}}{60}\)
\(\sqrt{\dfrac{11}{540}}=\dfrac{\sqrt{165}}{90}\)
\(\sqrt{\dfrac{3}{50}}=\dfrac{\sqrt{6}}{10}\)
\(\sqrt{\dfrac{5}{98}}=\dfrac{\sqrt{10}}{14}\)
\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)