Trong một túi kín, không nhìn thấy gì bên trong đựng 6 viên bi màu xanh, 8 viên màu đỏ, 3 viên màu vàng, 3 màu trắng cùng chủng loại, kích thước, trọng lượng. Không vạch túi quan sát, thò tay lấy 2 viên bi. Tính xác suất để lấy được viên bi màu trắng?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$(2x+y)^2+7a(2x+y)+10a^2$
$=(2x+y)^2+2a(2x+y)+5a(2x+y)+10a^2$
$=(2x+y)(2x+y+2a)+5a(2x+y+2a)$
$=(2x+y+2a)(2x+y+5a)$
Ý bạn muốn phân tích đa thức $(2x+y)^2+7a(2x+y)+10a^2$ thành nhân tử?
a: \(F\in SC\subset\left(SAC\right)\)
\(F\in\left(FBD\right)\)
Do đó: \(F\in\left(SAC\right)\cap\left(FBD\right)\)
Gọi O là giao điểm của AC và BD trong mp(ABCD)
=>\(O\in\left(SAC\right)\cap\left(FBD\right)\)
Do đó: \(\left(SAC\right)\cap\left(FBD\right)=FO\)
b: Xét (SAD) và (SBC) có
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
AD//BC
Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC
*) Với ba chữ số: 0; 1; 2, ta lập được các số:
102; 120; 201; 210
*) Với ba chữ số: 0; 1; 5 ta lập được các số sau:
105; 150; 501; 510
*) Với ba chữ số: 0; 2; 4 ta lập được các số sau:
204; 240; 402; 420
*) Với ba chữ số: 0; 3; 6 ta lập được các số sau:
306; 360; 603; 630
*) Với ba chữ số: 1; 2; 3 ta lập được các số sau:
123; 132; 213; 231; 312; 321
*) Với ba chữ số: 1; 2; 6 ta lập được các số sau:
126; 162; 216; 261; 612; 621
*) Với ba chữ số: 2; 4; 6 ta lập được các số sau:
246; 264; 426; 462; 624; 642
Vậy số các số có thể lập được là:
4 + 4 + 4 + 4 + 6 + 6 + 6 = 34 (số)
def count_multiples_of_3(n):
return n // 3
n = int(input())
result = count_multiples_of_3(n)
print(result)
Lời giải:
Tính xác suất để lấy được viên bi màu trắng? Ý bạn là lấy được 2 viên bi đều là màu trắng.
Tổng số bi: $6+8+3+3=20$ (viên)
Chọn 2 viên bi bất kỳ, có $C^2_{20}$ cách
Chọn 2 viên bi mà 2 viên đều màu trắng, có $C^2_3=3$ (cách)
Xác suất: $\frac{3}{C^2_{20}}=\frac{3}{190}$
Số viên bi trong hộp là :
6 + 8 + 3 + 3 = 20 (viên bi)
Số cách chọn 2 viên bi từ 20 viên là :
\(\dfrac{20!}{2!\left(20-2\right)!}\) = \(\dfrac{20.19}{2.1}\)=190
Ta có 2 trường hợp :
Trường hợp 1 : 1 viên trắng và 1 viên khác màu
Số cách chọn 1 viên bi màu trắng từ 3 viên: 3
Số cách chọn 1 viên bi khác màu từ 17 viên bi còn lại (không phải màu trắng): 17
Số cách lấy 1 viên màu trắng và 1 viên khác màu: 3.17=51
Trường hợp 2: Cả 2 viên bi đều là màu trắngSố cách chọn 2 viên bi từ 3 viên màu trắng:
\(\dfrac{3.2}{2.1}\)=3
Tổng số cách có ít nhất 1 viên bi màu trắng là: 51+3=54
Xác suất để lấy được ít nhất 1 viên bi màu trắng: \(\dfrac{54}{190}\) = 27/95 ≈ 0,2842
Vậy xác suất để lấy được ít nhất 1 viên bi màu trắng là khoảng 28,42%