Cho tam giác ABC. Dựng ngoài tam giác ABC hình chữ nhật BCDG. Dựng DE vuông góc AB và GF vuông góc AC; DE và GF cắt nhau tại L. Vẽ vecto AK = vecto CD. Chứng minh rằng: AL vuông góc BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5 - 2x > x + 0
=> 5 - 2x - x > 0
=> -3x < -5
=> x < \(\frac{5}{3}\)
Vậy x / x < \(\frac{5}{3}\)
có góc ABC là góc tù vì 360-90-90-60=120
vậy CM \(\ge\)BC
vậy độ dài đoạn CM hay đọ dài vecto CM nhỏ nhất khi bằng BC
khi đó min(CM)=?
từ B hạ chân đường vuống góc xuống CD
khi đó ta dễ tính ra được BC=2a
từ C hà đường vuông góc tới AB
khi đó \(|\overrightarrow{CM}|^2\)=CM^2 = CH^2 + HM^2
vì CH không đổi nên ta không tính đến nó
có HM bé hơn hoặc bằng HA
vậy AC>= CM
vậy max(CM)=AC=\(2\sqrt{2}a\)
Vì là lớp dưới nên em chỉ biết làm thế này thoy :((((
Ta xét ba trường hợp với mọi a :
+) a = 0 => a8 - a5 + a2 - a + 1 = 1 > 0 ( đúng )
+) a > 0 => a8 ; a5 ; a2 ; a đều lớn hơn 0
Vì a8 > a5 ; a2 > a
=> a8 - a5 + a2 - a > 0
=> a8 - a5 + a2 - a + 1 > 1 > 0 ( đúng )
+) Với a < 0 => a8 > 0 ; a5 < 0 ; a2 > 0 ; a < 0
=> a8 - a5 > 0 ( do a5 < 0 và a8 > 0) và a2 - a > 0 ( do a2 > 0 ; a < 0 )
=> a8 - a5 + a2 - a + 1 > 0
Từ 3 trường hợp trên => a8 - a5 + a2 - a + 1 luôn lớn hơn 0 với mọi a
a8 - a5 + a2 - a + 1
= a.a7 - a.a4 + a.a - a + 1
= a.(a7- a4 + a - a) + 1
= a.a3+1
--> a8 - a5 + a2 - a + 1 > 0.
Mình cũng không chắc, thông cảm nhé~
Học tốt nhaa~~