K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

Ta có:

\(a^2+b^2+c^2=\frac{b^2-c^2}{3+a^2}+\frac{c^2-a^2}{4+b^2}+\frac{a^2-b^2}{5+c^2}\)

\(\Leftrightarrow a^2+\frac{a^2}{4+b^2}-\frac{a^2}{5+c^2}+b^2+\frac{b^2}{5+c^2}-\frac{b^2}{3+a^2}+c^2+\frac{c^2}{3+a^2}-\frac{c^2}{4+b^2}=0\)

 \(\Leftrightarrow a^2.\frac{b^2c^2+4b^2+5c^2+21}{\left(4+b^2\right)\left(5+c^2\right)}+b^2.\frac{a^2c^2+6a^2+2c^2+13}{\left(3+a^2\right)\left(5+c^2\right)}+c^2.\frac{a^2b^2+3a^2+4b^2+13}{\left(3+a^2\right)\left(4+b^2\right)}=0\)

Dấu = xảy ra khi \(a=b=c=0\)

Thế vô ta có: \(S=2016ab+bc+20c=0\)

26 tháng 3 2017

-  Tớ ko hiểu -_-