Bạn Khánh là một vận động viên cầu lông. Để tập luyện, mỗi ngày bạn chơi ít nhất một trận và mỗi tuần chơi không quá 12 trận. Chứng minh rằng tồn tại một số ngày liên tiếp mà bạn chơi đúng 20 trận
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x (km/h) là vận tốc của ô tô thứ nhất (x > 10)
Vận tốc của ô tô thứ hai là: x - 10 (km/h)
Thời gian ô tô thứ nhất đi hết quãng đường AB: 360/x (h)
Thời gian ô tô thứ hai đi hết quãng đường AB: 360/(x - 10) (h)
1 giờ 12 phút = 6/5 h
Theo đề bài ta có phương trình:
360/(x - 10) - 360/x = 6/5
360.5x - 360.5(x - 10) = 6x.(x - 10)
1800x - 1800x + 18000 = 6x² - 60x
6x² - 60x - 18000 = 0
x² - 10x - 3000 = 0
x² - 60x + 50x - 3000 = 0
(x² - 60x) + (50x - 3000) = 0
x(x - 60) + 50(x - 60) = 0
(x - 60)(x + 50) = 0
x - 60 = 0 hoặc x + 50 = 0
*) x - 60 = 0
x = 60 (nhận)
*) x + 50 = 0
x = -50 (loại)
Vậy vận tốc của ô tô thứ nhất là 60 km/h, vận tốc của ô tô thứ hai là 60 - 10 = 50 km/h
Xét ΔABD vuông tại D và ΔACE vuông tại E có
BD=CE
\(\widehat{ABD}=\widehat{ACE}\left(=90^0-\widehat{BAD}\right)\)
Do đó: ΔABD=ΔACE
=>AB=AC
=>ΔABC cân tại A
Câu 17:
a: ΔBAC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=6^2+8^2=100=10^2\)
=>BC=10(cm)
Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
=>\(\dfrac{DB}{6}=\dfrac{DC}{8}\)
=>\(\dfrac{DB}{3}=\dfrac{DC}{4}\)
mà DB+DC=BC=10cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{10}{7}\)
=>\(DB=3\cdot\dfrac{10}{7}=\dfrac{30}{7}\left(cm\right);DC=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\left(cm\right)\)
b: Kẻ DH\(\perp\)AC
=>DH là khoảng cách từ D xuống AC
Ta có: DH\(\perp\)AC
AB\(\perp\)AC
Do đó: DH//AB
Xét ΔBAC có DH//AB
nên \(\dfrac{CD}{CB}=\dfrac{DH}{AB}\)
=>\(\dfrac{DH}{6}=\dfrac{80}{7}:20=\dfrac{4}{7}\)
=>\(DH=\dfrac{4}{7}\cdot6=\dfrac{24}{7}\left(cm\right)\)
Câu 16:
\(\Omega=\left\{10;11;...;29\right\}\)
=>\(n\left(\Omega\right)=29-10+1=30-10=20\)
Gọi A là biến cố: "Số viết được là số có hai chữ số giống nhau"
=>A={22;33}
=>n(A)=2
=>\(P\left(A\right)=\dfrac{2}{30}=\dfrac{1}{15}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(x^2+1)[1+(y+z)^2]\geq (x+y+z)^2$
$\Rightarrow \frac{3}{4}(x^2+1)[1+(y+z)^2]\geq \frac{3}{4}(x+y+z)^2$
Giờ ta chỉ cần cm:
$(y^2+1)(z^2+1)\geq \frac{3}{4}[1+(y+z)^2]$
$\Leftrightarrow 4(y^2z^2+y^2+z^2+1)\geq 3(y^2+z^2+2yz+1)$
$\Leftrightarrow 4y^2z^2+1+y^2+z^2-6yz\geq 0$
$\Leftrightarrow (2yz-1)^2+(y-z)^2\geq 0$ (luôn đúng)
Do đó ta có đpcm
Áp dụng BĐT Bunhiacopxky:
(�2+1)[1+(�+�)2]≥(�+�+�)2(x2+1)[1+(y+z)2]≥(x+y+z)2
⇒34(�2+1)[1+(�+�)2]≥34(�+�+�)2⇒43(x2+1)[1+(y+z)2]≥43(x+y+z)2
Giờ ta chỉ cần cm:
(�2+1)(�2+1)≥34[1+(�+�)2](y2+1)(z2+1)≥43[1+(y+z)2]
⇔4(�2�2+�2+�2+1)≥3(�2+�2+2��+1)⇔4(y2z2+y2+z2+1)≥3(y2+z2+2yz+1)
⇔4�2�2+1+�2+�2−6��≥0⇔4y2z2+1+y2+z2−6yz≥0
⇔(2��−1)2+(�−�)2≥0⇔(2yz−1)2+(y−z)2≥0 (luôn đúng)
Do đó ta có điều phải chứng minh
Ta có: \(x+y+z=1\Rightarrow z=1-x-y\)
Khi đó: \(xy+z=xy+1-x-y\)
\(=x\left(y-1\right)-\left(y-1\right)=\left(x-1\right)\left(y-1\right)\) (1)
Tương tự, ta cũng có: \(\left\{{}\begin{matrix}yz+x=\left(y-1\right)\left(z-1\right)\\zx+y=\left(z-1\right)\left(x-1\right)\end{matrix}\right.\) (2)
Lại có: \(x+y+z=1\Rightarrow\left\{{}\begin{matrix}x+y=1-z\\y+z=1-x\\z+x=1-y\end{matrix}\right.\) (3)
Thay (1); (2) và (3) vào \(T\), ta được:
\(T=\dfrac{\left[\left(x-1\right)\left(y-1\right)\right]\left[\left(y-1\right)\left(z-1\right)\right]\left[\left(z-1\right)\left(x-1\right)\right]}{\left(1-z\right)^2\left(1-x\right)^2\left(1-y\right)^2}\)
\(=\dfrac{\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2}{\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2}=1\)
Vậy \(T=1\).
a: Xét ΔHBA vuông tại H và ΔHCB vuông tại H có
\(\widehat{HBA}=\widehat{HCB}\left(=90^0-\widehat{HAB}\right)\)
Do đó: ΔHBA~ΔHCB
=>\(\dfrac{HB}{HC}=\dfrac{HA}{HB}\)
=>\(HB^2=HA\cdot HC\)
b: Ta có: HM\(\perp\)BA
BC\(\perp\)BA
Do đó: HM//BC
Xét ΔAMH vuông tại M và ΔHNC vuông tại N có
\(\widehat{MHA}=\widehat{NCH}\)(hai góc đồng vị, MH//BC)
Do đó: ΔAMH~ΔHNC
c: Xét tứ giác BMHN có \(\widehat{BMH}=\widehat{BNH}=\widehat{MBN}=90^0\)
nên BMHN là hình chữ nhật
=>\(\widehat{NMH}=\widehat{NBH}\)
mà \(\widehat{NBH}=\widehat{BAC}\left(=90^0-\widehat{C}\right)\)
nên \(\widehat{NMH}=\widehat{BAC}\)
Ta có: BMHN là hình chữ nhật
=>\(\widehat{MNH}=\widehat{MBH}\)
mà \(\widehat{MBH}=\widehat{C}\left(=90^0-\widehat{A}\right)\)
nên \(\widehat{MNH}=\widehat{C}\)
Ta có: ΔCHN vuông tại N
mà NI là đường trung tuyến
nên IN=IH
=>ΔINH cân tại I
=>\(\widehat{INH}=\widehat{IHN}\)
mà \(\widehat{IHN}=\widehat{A}\)(hai góc đồng vị, NH//AB)
nên \(\widehat{INH}=\widehat{A}\)
Ta có: ΔHMA vuông tại M
mà MK là đường trung tuyến
nên KH=KM
=>ΔKHM cân tại K
=>\(\widehat{KMH}=\widehat{KHM}\)
mà \(\widehat{KHM}=\widehat{C}\)(hai góc đồng vị, MH//BC)
nên \(\widehat{KMH}=\widehat{C}\)
\(\widehat{INM}=\widehat{INH}+\widehat{MNH}=\widehat{C}+\widehat{A}=90^0\)
=>IN\(\perp\)NM(1)
\(\widehat{KMN}=\widehat{KMH}+\widehat{NMH}=\widehat{C}+\widehat{A}=90^0\)
=>NM\(\perp\)MK(2)
Từ (1),(2) suy ra MK//NI
Xét tứ giác KMNI có MK//NI
nên KMNI là hình thang
Hình thang KMNI có IN\(\perp\)NM
nên KMNI là hình thang vuông
a: Xét ΔABC có DE//BC
nên \(\dfrac{DE}{BC}=\dfrac{AD}{AB}\)
=>\(\dfrac{DE}{8}=\dfrac{2}{5}\)
=>\(DE=8\cdot\dfrac{2}{5}=3,2\left(cm\right)\)
b: Xét tứ giác BDFC có
BD//FC
DF//BC
Do đó: BDFC là hình bình hành
=>DF=BC=8cm
DE+EF=DF
=>EF+3,2=8
=>EF=4,8(cm)
Xét ΔIFE và ΔIBC có
\(\widehat{IFE}=\widehat{IBC}\)(hai góc so le trong, FE//BC)
\(\widehat{FIE}=\widehat{BIC}\)(hai góc đối đỉnh)
Do đó: ΔIFE~ΔIBC
=>\(\dfrac{IF}{IB}=\dfrac{IE}{IC}=\dfrac{FE}{BC}\)
=>\(\dfrac{IF}{IB}=\dfrac{4.8}{8}=\dfrac{3}{5}\)
c: Xét ΔIFC và ΔIBA có
\(\widehat{IFC}=\widehat{IBA}\)(hai góc so le trong, FC//BA)
\(\widehat{FIC}=\widehat{BIA}\)(hai góc đối đỉnh)
Do đó: ΔIFC~ΔIBA
=>\(\dfrac{IF}{IB}=\dfrac{IC}{IA}\)
=>\(\dfrac{IC}{IA}=\dfrac{IE}{IC}\)
=>\(IC^2=IE\cdot IA\)