Cho tam giác ABC cân tại A. Kẻ BD vuông góc AC (D thuộc AC ), CE vuông góc AB ( E thuộc AB ). BD và CE cắt nhau tại H
a) Chứng minh tam giác BEC và tam giác CDB
b) Chứng minh tam giác BHC là tam giác cân
c) Gọi M là giao điểm của AH và BC. Chứng minh AM là đường trung trực của BC
P/s câu a và b với vẽ hình mình đã biết làm rồi còn câu c mình bí.
Ta có CE vuông góc AB (GT)
suy ra CE là đường cao (1)
Ta có BD vuông góc AC(GT)
suy ra BD là đường cao (2)
Mà BD giao CE tại H
Từ (1) và (2) suy ra H là trực tâm (định nghĩa )
suy ra AM vuông góc BC (1)
Ta có tam giác ABC cân tại A (GT)
suy ra AB=AC (định nghĩa )
Ta có AM vuông góc BC (CMT)
suy ra góc AMB = góc AMC = 90
Xét tam giác AMB và tam giác AMC có
AM chung
góc AMB = góc AMC =90
AB= AC(CMT)
suy ra tam giác AMB = tam giác AMC (ch-cgv)
suy ra M là trung điểm BC (2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
OK rồi đó