K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 6: Oz là phân giác của góc xOy

=>\(\widehat{xOz}=\dfrac{\widehat{xOy}}{2}=\dfrac{142^0}{2}=71^0\)

Ta có: \(\widehat{xOz}+\widehat{x'Oz}=180^0\)(hai góc kề bù)

=>\(\widehat{x'Oz}+71^0=180^0\)

=>\(\widehat{x'Oz}=109^0\)

Bài 7:

Ta có: Oz là phân giác của góc xOy

=>\(\widehat{xOz}=\widehat{yOz}=\dfrac{\widehat{xOy}}{2}=\dfrac{180^0}{2}=90^0\)

Ot là phân giác của góc xOz

=>\(\widehat{zOt}=\dfrac{\widehat{xOz}}{2}=\dfrac{90^0}{2}=45^0\)

Ov là phân giác của góc yOz

=>\(\widehat{vOz}=\dfrac{90^0}{2}=45^0\)

\(\widehat{vOt}=\widehat{zOv}+\widehat{zOt}=45^0+45^0=90^0\)

28 tháng 7

sửa đề chia hết 31 nhé 

\(S=5+5^2+5^3+...+5^{2019}=5\left(1+5+5^2+5^3\right)+...+5^{2016}\left(1+5+5^2+5^3\right)\)

\(=31\left(5+...+5^{2016}\right)⋮31\)

Vậy ta có đpcm 

29 tháng 7

Bài 2:

a) \(\dfrac{-7}{-13}=\dfrac{7}{13}\) là số hưu tỉ dương

b) \(\dfrac{2}{-17}=-\dfrac{2}{17}\) là số hưu tỉ âm

c) \(-\dfrac{-6}{5}=\dfrac{6}{5}\) là số hưu tỉ dương

29 tháng 7

Bài 3:

a) \(-2\dfrac{1}{4}=-\left(2+\dfrac{1}{4}\right)=-\dfrac{9}{4}\)

b) \(6\dfrac{2}{3}=6+\dfrac{2}{3}=\dfrac{20}{3}\)

c) \(-3\dfrac{1}{4}=-\left(3+\dfrac{1}{4}\right)=-\dfrac{13}{4}\)

26 tháng 7

        Bài 6:

\(\dfrac{9^5.9^7}{3^{22}}\) = \(\dfrac{3^{15}.3^{21}}{3^{22}}\) = \(\dfrac{3^{36}}{3^{22}}\)  = 314

 

 

 

26 tháng 7

  Bài 7:

\(\dfrac{9^{16}.8^{11}}{6^{33}}\) =  \(\dfrac{3^{32}.2^{33}}{3^{33}.2^{33}}\) = \(\dfrac{1}{3}\) 

 

27 tháng 7

alo

ko ai trả lời à   

ai tra lời cho 2 like

 

27 tháng 7

\(N=-1-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)\)

Xét \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\)

\(\dfrac{1}{2}A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{11}}\Rightarrow\dfrac{1}{2}A-A=\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{11}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)\)

\(\Leftrightarrow-\dfrac{1}{2}A=-\dfrac{1}{2}+\dfrac{1}{2^{11}}\Rightarrow A=-\dfrac{1}{2^{10}}\)

\(\Rightarrow N=-1-\left(-\dfrac{1}{2^{10}}\right)=-1+\dfrac{1}{2^{10}}\) 

=> Vậy ko tm đpcm 

27 tháng 7

\(\dfrac{x}{2}+\dfrac{x}{3}-1=\dfrac{1}{6}\Rightarrow3x+2x-6=1\Leftrightarrow5x=7\Leftrightarrow x=\dfrac{7}{5}\)

27 tháng 7

loading...  

a) Do ∆ABC cân tại A (gt)

⇒ AB = AC và ∠ABC = ∠ACB

Ta có:

∠ABF + ∠ABC = 180⁰ (kề bù)

∠ACE + ∠ACB = 180⁰ (kề bù)

Mà ∠ABC = ∠ACB (cmt)

⇒ ∠ABF = ∠ACE

Xét ∆ABF và ∆ACE có:

AB = AC (cmt)

∠ABE = ∠ACF (cmt)

BF = CE (gt)

⇒ ∆ABF = ∆ACE (c-g-c)

⇒ AF = AE (hai cạnh tương ứng)

⇒ ∆AEF cân tại A

b) *) Cách 1:

Do ∆ABF = ∆ACE (cmt)

⇒ ∠BAF = ∠CAE (hai góc tương ứng)

⇒ ∠BAH = ∠CAK

Xét hai tam giác vuông: ∆ABH và ∆ACK có:

AB = AC (cmt)

∠BAH = ∠CAK (cmt)

⇒ ∆ABH = ∆ACK (cạnh huyền - góc nhọn)

⇒ BH = CK (hai cạnh tương ứng)

*) Cách 2:

Do ∆AEF cân tại A (cmt)

⇒ ∠AFE = ∠AEF

⇒ ∠HFB = ∠KEC

Xét hai tam giác vuông: ∆BHF và ∆CKE có:

BF = CE (gt)

∠HFB = ∠KEC (cmt)

⇒ ∆BHF = ∆CKE (cạnh huyền - góc nhọn)

⇒ BH = CK (hai cạnh tương ứng)

c) Sửa đề: Gọi O là giao điểm của HB và KC

Do ∆BHF = ∆CKE (cmt)

⇒ ∠HBF = ∠KCE (hai góc tương ứng)

Mà ∠CBO = ∠HBF (đối đỉnh)

∠BCO = ∠KCE (đối đỉnh)

⇒ ∠CBO = ∠BCO

⇒ ∆BOC cân tại O

Sửa đề: \(B=\left(1+\dfrac{1}{1\cdot3}\right)\cdot\left(1+\dfrac{1}{2\cdot4}\right)\cdot...\cdot\left(1+\dfrac{1}{2022\cdot2024}\right)\)

\(=\left(1+\dfrac{1}{2^2-1}\right)\cdot\left(1+\dfrac{1}{3^2-1}\right)\cdot...\cdot\left(1+\dfrac{1}{2023^2-1}\right)\)

\(=\dfrac{2^2}{2^2-1}\cdot\dfrac{3^2}{3^2-1}\cdot...\cdot\dfrac{2023^2}{2023^2-1}\)

\(=\dfrac{2\cdot3\cdot...\cdot2023}{1\cdot2\cdot...\cdot2022}\cdot\dfrac{2\cdot3\cdot....\cdot2023}{3\cdot4\cdot...\cdot2024}\)

\(=\dfrac{2023}{1}\cdot\dfrac{2}{2024}=\dfrac{2023}{1012}\)