K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2023

\(\left|x-1\right|+\left|x+3\right|\)

\(\left|1-x\right|+\left|x+3\right|\ge\left|1-x+x+3\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\x+3\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le1\\x\ge-3\end{matrix}\right.\)

Vậy \(\left|x-1\right|+\left|x+3\right|\ge4\Leftrightarrow-3\le x\le1\)

28 tháng 8 2023

actively

28 tháng 8 2023

actively

29 tháng 8 2023

\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=5x\left(1\right)\)

Ta có :

\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|\ge\left|x+1+x+2+x+3+x+4\right|=\left|4x+10\right|\)

\(pt\left(1\right)\Leftrightarrow\left|4x+10\right|=5x\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+10=5x\\4x+10=-5x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10\\9x=-10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-\dfrac{10}{9}\end{matrix}\right.\) \(\left(thỏa.mãnx\inℚ\right)\)

28 tháng 8 2023

ươc của nó là { 8,4 }

28 tháng 8 2023

ko biết có đúng ko nhưng mình biết bạn sai nha @ phau hai

28 tháng 8 2023

2 số tự nhiên mà mỗi số đó có 3 ước nguyên tố là 30,385

28 tháng 8 2023

các ước của 2 số đó là gì ạ

28 tháng 8 2023

hoa bằng lăng đã nở 

hoa bằng năng nở rồi 

hoa bằng năng nở kìa 

28 tháng 8 2023

bằng lăng không phải là bằng năng nhen.

29 tháng 8 2023

Số hạng thứ 123 là :

\(992-\left(123-1\right)x7=138\)

Tổng 123 số hạng đầu tiên là :

\(123x\left(992+138\right):2=69495\)

28 tháng 8 2023

457:37-37.57=0

28 tháng 8 2023

ĐKXĐ : \(x\notin\left\{0;-1;-2;-3;-4\right\}\)

Ta có \(\dfrac{1}{x}+\dfrac{1}{x+1}+\dfrac{1}{x+2}+\dfrac{1}{x+3}+\dfrac{1}{x+4}=0\)

\(\Leftrightarrow\dfrac{2x+4}{x.\left(x+4\right)}+\dfrac{2x+4}{\left(x+1\right).\left(x+3\right)}+\dfrac{1}{x+2}=0\)

\(\Leftrightarrow\dfrac{2x+4}{\left(x+2\right)^2-4}+\dfrac{2x+4}{\left(x+2\right)^2-1}+\dfrac{1}{x+2}=0\) (*)

Đặt x + 2 = a \(\left(a\ne0\right)\) 

(*) \(\Leftrightarrow\dfrac{2a}{a^2-4}+\dfrac{2a}{a^2-1}+\dfrac{1}{a}=0\)

\(\Leftrightarrow\dfrac{2}{a-\dfrac{4}{a}}+\dfrac{2}{a-\dfrac{1}{a}}+\dfrac{1}{a}=0\) (**)

Đặt \(\dfrac{1}{a}=b\left(b\ne0\right)\) \(\Rightarrow ab=1\)

Ta được (**) \(\Leftrightarrow\dfrac{2}{a-4b}+\dfrac{2}{a-b}+b=0\)

\(\Leftrightarrow\dfrac{2b}{1-4b^2}+\dfrac{2b}{1-b^2}+b=0\)

\(\Leftrightarrow\dfrac{2}{1-4b^2}+\dfrac{2}{1-b^2}=-1\)

\(\Rightarrow4-10b^2=-4b^4+5b^2-1\)

\(\Leftrightarrow4b^4-15b^2+5=0\) (***)

Đặt b2 = t > 0

Ta có (***) <=> \(4t^2-15t+5=0\Leftrightarrow t=\dfrac{15\pm\sqrt{145}}{8}\) (tm)

\(\Leftrightarrow b=\pm\sqrt{\dfrac{15\pm\sqrt{145}}{8}}\) 

mà x + 2 = a ; ab = 1 

nên \(x=\pm\sqrt{\dfrac{8}{15\pm\sqrt{145}}}-2\)

Thử lại ta có phương trình có 4 nghiệm như trên